36,900views
00:00 / 00:00
Medical and surgical emergencies
Advanced cardiac life support (ACLS): Clinical (To be retired)
Supraventricular arrhythmias: Pathology review
Ventricular arrhythmias: Pathology review
Heart blocks: Pathology review
Coronary artery disease: Clinical (To be retired)
Heart failure: Clinical (To be retired)
Syncope: Clinical (To be retired)
Pericardial disease: Clinical (To be retired)
Valvular heart disease: Clinical (To be retired)
Chest trauma: Clinical (To be retired)
Shock: Clinical (To be retired)
Peripheral vascular disease: Clinical (To be retired)
Leg ulcers: Clinical (To be retired)
Aortic aneurysms and dissections: Clinical (To be retired)
Cholinomimetics: Direct agonists
Cholinomimetics: Indirect agonists (anticholinesterases)
Muscarinic antagonists
Sympathomimetics: Direct agonists
Sympatholytics: Alpha-2 agonists
Adrenergic antagonists: Presynaptic
Adrenergic antagonists: Alpha blockers
Adrenergic antagonists: Beta blockers
ACE inhibitors, ARBs and direct renin inhibitors
Loop diuretics
Thiazide and thiazide-like diuretics
Calcium channel blockers
cGMP mediated smooth muscle vasodilators
Class I antiarrhythmics: Sodium channel blockers
Class II antiarrhythmics: Beta blockers
Class III antiarrhythmics: Potassium channel blockers
Class IV antiarrhythmics: Calcium channel blockers and others
Positive inotropic medications
Antiplatelet medications
Blistering skin disorders: Clinical (To be retired)
Bites and stings: Clinical (To be retired)
Burns: Clinical (To be retired)
Diabetes mellitus: Clinical (To be retired)
Hyperthyroidism: Clinical (To be retired)
Hypothyroidism and thyroiditis: Clinical (To be retired)
Parathyroid conditions and calcium imbalance: Clinical (To be retired)
Adrenal insufficiency: Clinical (To be retired)
Neck trauma: Clinical (To be retired)
Insulins
Mineralocorticoids and mineralocorticoid antagonists
Glucocorticoids
Abdominal pain: Clinical (To be retired)
Appendicitis: Clinical (To be retired)
Gastrointestinal bleeding: Clinical (To be retired)
Peptic ulcers and stomach cancer: Clinical (To be retired)
Inflammatory bowel disease: Clinical (To be retired)
Diverticular disease: Clinical (To be retired)
Gallbladder disorders: Clinical (To be retired)
Pancreatitis: Clinical (To be retired)
Cirrhosis: Clinical (To be retired)
Hernias: Clinical (To be retired)
Bowel obstruction: Clinical (To be retired)
Abdominal trauma: Clinical (To be retired)
Laxatives and cathartics
Antidiarrheals
Acid reducing medications
Blood products and transfusion: Clinical (To be retired)
Venous thromboembolism: Clinical (To be retired)
Anticoagulants: Heparin
Anticoagulants: Warfarin
Anticoagulants: Direct factor inhibitors
Antiplatelet medications
Thrombolytics
Fever of unknown origin: Clinical (To be retired)
Infective endocarditis: Clinical (To be retired)
Pneumonia: Clinical (To be retired)
Tuberculosis: Pathology review
Diarrhea: Clinical (To be retired)
Urinary tract infections: Clinical (To be retired)
Meningitis, encephalitis and brain abscesses: Clinical (To be retired)
Bites and stings: Clinical (To be retired)
Skin and soft tissue infections: Clinical (To be retired)
Protein synthesis inhibitors: Aminoglycosides
Antimetabolites: Sulfonamides and trimethoprim
Antituberculosis medications
Miscellaneous cell wall synthesis inhibitors
Protein synthesis inhibitors: Tetracyclines
Cell wall synthesis inhibitors: Penicillins
Miscellaneous protein synthesis inhibitors
Cell wall synthesis inhibitors: Cephalosporins
DNA synthesis inhibitors: Metronidazole
DNA synthesis inhibitors: Fluoroquinolones
Herpesvirus medications
Azoles
Echinocandins
Miscellaneous antifungal medications
Anthelmintic medications
Antimalarials
Anti-mite and louse medications
Hypernatremia: Clinical (To be retired)
Hyponatremia: Clinical (To be retired)
Hyperkalemia: Clinical (To be retired)
Hypokalemia: Clinical (To be retired)
Metabolic and respiratory acidosis: Clinical (To be retired)
Metabolic and respiratory alkalosis: Clinical (To be retired)
Toxidromes: Clinical (To be retired)
Medication overdoses and toxicities: Pathology review
Environmental and chemical toxicities: Pathology review
Acute kidney injury: Clinical (To be retired)
Kidney stones: Clinical (To be retired)
Adrenergic antagonists: Alpha blockers
Stroke: Clinical (To be retired)
Seizures: Clinical (To be retired)
Headaches: Clinical (To be retired)
Traumatic brain injury: Clinical (To be retired)
Neck trauma: Clinical (To be retired)
Lower back pain: Clinical (To be retired)
Spinal cord disorders: Pathology review
Anticonvulsants and anxiolytics: Barbiturates
Anticonvulsants and anxiolytics: Benzodiazepines
Nonbenzodiazepine anticonvulsants
Migraine medications
Osmotic diuretics
Antiplatelet medications
Thrombolytics
Opioid agonists, mixed agonist-antagonists and partial agonists
Opioid antagonists
Asthma: Clinical (To be retired)
Chronic obstructive pulmonary disease (COPD): Clinical (To be retired)
Venous thromboembolism: Clinical (To be retired)
Acute respiratory distress syndrome: Clinical (To be retired)
Pleural effusion: Clinical (To be retired)
Pneumothorax: Clinical (To be retired)
Chest trauma: Clinical (To be retired)
Bronchodilators: Beta 2-agonists and muscarinic antagonists
Pulmonary corticosteroids and mast cell inhibitors
Joint pain: Clinical (To be retired)
Anatomy clinical correlates: Clavicle and shoulder
Anatomy clinical correlates: Axilla
Anatomy clinical correlates: Arm, elbow and forearm
Anatomy clinical correlates: Wrist and hand
Anatomy clinical correlates: Median, ulnar and radial nerves
Anatomy clinical correlates: Bones, joints and muscles of the back
Anatomy clinical correlates: Hip, gluteal region and thigh
Anatomy clinical correlates: Knee
Anatomy clinical correlates: Leg and ankle
Anatomy clinical correlates: Foot
Acetaminophen (Paracetamol)
Non-steroidal anti-inflammatory drugs
Glucocorticoids
Opioid agonists, mixed agonist-antagonists and partial agonists
Antigout medications
ACE inhibitors, ARBs and direct renin inhibitors
0 / 14 complete
of complete
2022
2021
2020
2019
2018
2017
2016
Antihypertensives are a class of medication used to treat hypertension, or high blood pressure.
Certain antihypertensives act upon the renin-angiotensin-aldosterone system to decrease blood pressure by inhibiting vasoconstriction and water reabsorption in the kidneys.
Hypertension affects over a billion people around the world, and it’s a major risk factor for heart disease and stroke.
Blood pressure is the force that blood exerts on the walls of blood vessels.
Now, there’s a number of factors that determine blood pressure. For example, imagine a hose connected to a pump where the hose is the blood vessel and the pump is the heart. If more water is pumped out, the pressure in the hose increases.
Now if we squeeze the hose, narrowing the diameter, the pressure inside would be greater and the water will shoot out more strongly. This is similar to how the diameter of the blood vessels can affect blood pressure, which can change in response to different stimuli.
One important mechanism that regulates blood pressure is the Renin-Angiotensin-Aldosterone System - or RAAS for short - which is a cascade of events that ends up increasing blood pressure.
When blood pressure is low, blood flow to the kidneys decreases. The kidneys respond by secreting renin into the bloodstream.
Renin is a proteolytic enzyme that breaks down a protein made in the liver called angiotensinogen, and this gives rise to angiotensin I.
When it reaches the lungs, angiotensin I is converted into angiotensin II by an enzyme called Angiotensin-converting enzyme, or ACE for short.
Now, angio- refers to the blood vessels; and -tens, well it means “to tense.”
So angiotensin II binds to receptors in vascular smooth muscle and causes them to constrict, which increases the blood pressure.
Finally, angiotensin II also stimulates the release of aldosterone by the adrenal glands.
ACE inhibitors, ARBs and direct renin inhibitors are all medications used to treat high blood pressure. ACE or angiotensin-converting enzyme inhibitors work by blocking the enzyme that converts angiotensin I to angiotensin II. This prevents the body from producing too much of the hormone, which can lead to hypertension. ARBs or angiotensin II receptor blockers work by blocking the receptors that angiotensin II binds to constrict blood vessels. This relaxes the blood vessels and lowers blood pressure. Direct renin inhibitors work by inhibiting renin, the enzyme that converts angiotensinogen to angiotensin I, which also reduces blood pressure. All three of these medications can be used alone or in combination with other medications to safely lower blood pressure.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.