Alport syndrome

00:00 / 00:00



Alport syndrome


Genetic disorders


Alagille syndrome (NORD)

Familial adenomatous polyposis

Familial hypercholesterolemia

Hereditary spherocytosis

Huntington disease

Li-Fraumeni syndrome

Marfan syndrome

Multiple endocrine neoplasia

Myotonic dystrophy


Polycystic kidney disease

Treacher Collins syndrome

Tuberous sclerosis

von Hippel-Lindau disease




Cystic fibrosis

Friedreich ataxia

Gaucher disease (NORD)

Glycogen storage disease type I

Glycogen storage disease type II (NORD)

Glycogen storage disease type III

Glycogen storage disease type IV

Glycogen storage disease type V


Krabbe disease


Mucopolysaccharide storage disease type 1 (Hurler syndrome) (NORD)

Niemann-Pick disease type C

Niemann-Pick disease types A and B (NORD)

Phenylketonuria (NORD)

Polycystic kidney disease

Primary ciliary dyskinesia

Sickle cell disease (NORD)

Tay-Sachs disease (NORD)

Wilson disease

Cri du chat syndrome

Williams syndrome

Angelman syndrome

Prader-Willi syndrome

Beckwith-Wiedemann syndrome

Mitochondrial myopathy

Klinefelter syndrome

Turner syndrome

Fragile X syndrome

Friedreich ataxia

Huntington disease

Myotonic dystrophy

Down syndrome (Trisomy 21)

Edwards syndrome (Trisomy 18)

Patau syndrome (Trisomy 13)

Alport syndrome

Fragile X syndrome

Fabry disease (NORD)

Glucose-6-phosphate dehydrogenase (G6PD) deficiency


Lesch-Nyhan syndrome

Mucopolysaccharide storage disease type 2 (Hunter syndrome) (NORD)

Muscular dystrophy

Ornithine transcarbamylase deficiency

Wiskott-Aldrich syndrome

X-linked agammaglobulinemia

Autosomal trisomies: Pathology review

Miscellaneous genetic disorders: Pathology review

Muscular dystrophies and mitochondrial myopathies: Pathology review


Alport syndrome


0 / 7 complete

USMLE® Step 1 questions

0 / 2 complete

High Yield Notes

6 pages


Alport syndrome

of complete


USMLE® Step 1 style questions USMLE

of complete

A 7-year-old boy is brought to the office by his parents for the evaluation of red colored urine. The patient has not experienced pain with urination, urinary frequency, or urgency. He has never experienced similar symptoms before. According to his parents, the patient has had fever and rhinorrhea for the past 2 days. Past medical history is notable for sensorineural deafness requiring hearing aids. He is otherwise healthy and enjoys being in the 1st grade. Family history is significant for end-stage renal disease in the patient’s maternal grandfather. Temperature is 37.1°C (98.8°F ), pulse is 86/min, respirations are 18/min, and blood pressure is 145/85 mmHg. Physical examination reveals a well-appearing boy in no acute distress. Cardiac, respiratory, and abdominal exams are unremarkable. Urinalysis is notable for microscopic hematuria and mild proteinuria. The type of collagen defective in this patient's condition is most extensively found in which of the following body tissues?

External References

First Aid








Alport syndrome p. 620

cataracts and p. 554

collagen deficiency in p. 48

inheritance of p. 57

presentation p. 714


Alport syndrome p. 620

Eye disorders/diseases

Alport syndrome p. 622


Alport syndrome p. 620


Collagens are a family of proteins that are collectively the most abundant protein in the body, and can be found throughout the various connective tissues.

Each member of the family is named with a Roman numeral, and if mutated or absent, can lead to problems in the tissues where that particular collagen is found.

Alport syndrome occurs as a result of mutations in Type IV collagen, which is particularly important in the glomerulus of the kidney, the eye, and the cochlea, and that’s why the symptoms of Alport syndrome are specific to those tissues.

Type IV collagen is a sheet-like structure found in all basement membranes and serves to support cells and form barrier.

The three basement membrane layers are the lamina lucida, lamina densa (where type IV collagen is), and lamina reticularis.

Now within the kidneys, there are glomeruli, which filter the blood and that together with a tubule forms a nephron.

These glomeruli happen to have a basement membranes, called the glomerular basement membrane, or GBM, and that GBM, along with the fenestrated, meaning has pores, capillary endothelium and the podocyte slit diaphragm, forms a selective filter, meaning that water and certain other plasma components can escape the capillary, forming the filtrate that will become urine, but red blood cells and most proteins stay in the glomerular capillary.

In Alport syndrome, kidney function is normal through early childhood, but over time, the missing or nonfunctional type IV collagen causes the GBM to become thin and overly porous.

This allows red blood cells to pass right through from the capillary to the urinary filtrate leading to microscopic hematuria, which is where red blood cells are seen in the urine under a microscope, and this might eventually lead to gross hematuria, where the red blood cells can be seen with the naked eye.

Over time, excessive amounts of protein start to get through the filter, resulting in proteinuria, or protein in the urine.


Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.