1,429,360views
00:00 / 00:00
Nervous system
Spina bifida
Chiari malformation
Dandy-Walker malformation
Syringomyelia
Tethered spinal cord syndrome
Aqueductal stenosis
Septo-optic dysplasia
Cerebral palsy
Spinocerebellar ataxia (NORD)
Transient ischemic attack
Ischemic stroke
Intracerebral hemorrhage
Epidural hematoma
Subdural hematoma
Subarachnoid hemorrhage
Saccular aneurysm
Arteriovenous malformation
Broca aphasia
Wernicke aphasia
Wernicke-Korsakoff syndrome
Kluver-Bucy syndrome
Concussion and traumatic brain injury
Shaken baby syndrome
Epilepsy
Febrile seizure
Early infantile epileptic encephalopathy (NORD)
Tension headache
Cluster headache
Migraine
Idiopathic intracranial hypertension
Trigeminal neuralgia
Cavernous sinus thrombosis
Alzheimer disease
Vascular dementia
Frontotemporal dementia
Lewy body dementia
Creutzfeldt-Jakob disease
Normal pressure hydrocephalus
Torticollis
Essential tremor
Restless legs syndrome
Parkinson disease
Huntington disease
Opsoclonus myoclonus syndrome (NORD)
Multiple sclerosis
Central pontine myelinolysis
Acute disseminated encephalomyelitis
Transverse myelitis
JC virus (Progressive multifocal leukoencephalopathy)
Adult brain tumors
Acoustic neuroma (schwannoma)
Pituitary adenoma
Pediatric brain tumors
Brain herniation
Brown-Sequard Syndrome
Cauda equina syndrome
Treponema pallidum (Syphilis)
Vitamin B12 deficiency
Syringomyelia
Friedreich ataxia
Neurogenic bladder
Meningitis
Neonatal meningitis
Encephalitis
Brain abscess
Epidural abscess
Cavernous sinus thrombosis
Creutzfeldt-Jakob disease
Sturge-Weber syndrome
Tuberous sclerosis
Neurofibromatosis
von Hippel-Lindau disease
Amyotrophic lateral sclerosis
Spinal muscular atrophy
Poliovirus
Guillain-Barre syndrome
Charcot-Marie-Tooth disease
Trigeminal neuralgia
Bell palsy
Winged scapula
Thoracic outlet syndrome
Carpal tunnel syndrome
Ulnar claw
Erb-Duchenne palsy
Klumpke paralysis
Sciatica
Myasthenia gravis
Lambert-Eaton myasthenic syndrome
Orthostatic hypotension
Horner syndrome
Congenital neurological disorders: Pathology review
Headaches: Pathology review
Seizures: Pathology review
Cerebral vascular disease: Pathology review
Traumatic brain injury: Pathology review
Spinal cord disorders: Pathology review
Dementia: Pathology review
Central nervous system infections: Pathology review
Movement disorders: Pathology review
Neuromuscular junction disorders: Pathology review
Demyelinating disorders: Pathology review
Adult brain tumors: Pathology review
Pediatric brain tumors: Pathology review
Neurocutaneous disorders: Pathology review
Alzheimer disease
0 / 18 complete
0 / 5 complete
of complete
of complete
2022
2021
2020
2019
2018
2017
2016
Alzheimer disease p. 569
amalyoidosis in p. 216
Down syndome and p. 61
drug therapy for p. 241, 569
labs/findings p. 722, 731
neurotransmitters for p. 512
ventriculomegaly with p. 540
for Alzheimer disease p. 569
Alzheimer disease drugs p. 569
Alzheimer disease p. 569
Tanner Marshall, MS
Dementia isn’t technically a disease, but more of a way to describe a set of symptoms like poor memory and difficulty learning new information, which can make it really hard to function independently.
Usually dementia’s caused by some sort of damage to the cells in the brain, which can be caused by a variety of diseases. Alzheimer’s disease, now referred to as Alzheimer disease, is the most common cause of dementia.
Alzheimer disease is considered a neurodegenerative disease, meaning it causes the degeneration, or loss, of neurons in the brain, particularly in the cortex. This, as you might expect, leads to the symptoms characteristic of dementia.
Although the cause of Alzheimer disease isn’t completely understood, two major players that are often cited in its progression are plaques and tangles.
Alright, so here we’ve got the cell membrane of a neuron in the brain. In the membrane, you’ve got this molecule called amyloid precursor protein, or APP, one end of this guy’s in the cell, and the other end’s outside the cell. It’s thought that this guy helps the neuron grow and repair itself after an injury.
Since APP’s a protein, just like other proteins, it gets used and over time it gets broken down and recycled.
Normally, it gets chopped up by an enzyme called alpha secretase and it’s buddy, gamma secretase.
This chopped up peptide is soluble and goes away, and everything’s all good.
If another enzyme, beta secretase, teams up with gamma secretase instead, then we’ve got a problem, and this leftover fragment isn’t soluble, and creates a monomer called amyloid beta.
These monomers tend to be chemically “sticky”, and bond together just outside the neurons, and form what are called beta-amyloid plaques—these clumps of lots of these monomers.
These plaques can potentially get between the neurons, which can get in the way of neuron-to-neuron signaling.
If the brain cells can’t signal and relay information, then brain functions like memory can be seriously impaired.
It’s also thought that these plaques can start up an immune response and cause inflammation which might damage surrounding neurons.
Amyloid plaque can also deposit around blood vessels in the brain, called amyloid angiopathy, which weakens the walls of the blood vessels and increases the risk of hemorrhage, or rupture and blood loss.
Here’s an image of amyloid plaque on histology, these clumps are buildups of beta amyloid, and this is happening outside the cell.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.