Anatomy clinical correlates: Bones, fascia and muscles of the neck

00:00 / 00:00


Anatomy clinical correlates: Bones, fascia and muscles of the neck

USMLE® Step 1 questions

0 / 2 complete

USMLE® Step 2 questions

0 / 7 complete


USMLE® Step 1 style questions USMLE

of complete

USMLE® Step 2 style questions USMLE

of complete

A 24-year-old man presents to the emergency department following a motor vehicle collision. He is experiencing severe pain in his face and neck. He has significant neck swelling with odynophagia localized to the left side. The odynophagia is worsened with opening his mouth, speaking, or swallowing. The patient has no dyspnea or signs of airway compromise. Head CT and sagittal neck X-ray are shown. Which of the following is the most likely mechanism of injury?  

Image credit: Pubmed  


The neck contains many vital structures, including blood vessels, nerves, and lymphatics, as well as organs like the thyroid and parathyroid glands, parts of the airway like the larynx and trachea, and parts of the digestive tract like the pharynx and esophagus. All these structures are protected by the bones, fascia and muscles of the neck.

The skeleton of the neck is formed by the cervical spine, the hyoid bone, the manubrium of the sternum, and the clavicles. All of these structures are prone to injuries, so hopefully learning about them in this video won't be too much of a pain in the neck!

Let's get started! First, let’s look at cervical spine fractures. The cervical spine is the most flexible and mobile part of the vertebral column. But that flexibility comes with a price, making the cervical spine vulnerable to injury. Now, cervical spine fractures can be stable, meaning the spinal cord is at minimal to no risk of injury due to the fracture pattern, or unstable, meaning the spinal cord is at a much greater risk of injury due to the fracture pattern.

Let’s take a look at some important types of cervical fractures. Let’s start from the C1, or atlas, vertebra. These fractures are also called Jefferson or burst fractures. As you might remember, C1 is a ring shaped bone that has paired wedge shaped lateral masses connected by thin anterior and posterior arches and a transverse ligament.

The C1 vertebra sustains the weight of the cranium, kind of like how the God Atlas of Greek mythology bore the weight of the world on his shoulders. Now, because the taller side of the lateral mass is directed laterally, when there are vertical forces that compress the lateral masses between the occipital condyles above, and the C2 or axis below, this compressive force drives the two lateral masses of the C1 vertebrae apart, which can lead to fractures in either the anterior arch, the posterior arch, or both.


  1. "Canadian C-spine rule and the National Emergency X-Radiography Utilization Study (NEXUS) for detecting clinically important cervical spine injury following blunt trauma" Cochrane Database of Systematic Reviews (2018)
  2. "Fracture of the atlas vertebra. Report of four cases, and a review of those previously recorded" British Journal of Surgery (1919)
  3. "Management of Hyoid Bone Fractures" Otolaryngology–Head and Neck Surgery (2012)
  4. "Current concepts on the clinical features, aetiology and management of idiopathic cervical dystonia" Brain (1998)
  5. "Torticollis" Psychology Press (1996)
  6. "Spine Disorders" Cambridge University Press (2009)
  7. "Retrocollis: Classification, Clinical Phenotype, Treatment Outcomes and Risk Factors" European Neurology (2007)

Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.