Anatomy clinical correlates: Bones, joints and muscles of the back

00:00 / 00:00

Videos

Notes

Anatomy clinical correlates: Bones, joints and muscles of the back

Medical and surgical emergencies

Cardiology, cardiac surgery and vascular surgery

Advanced cardiac life support (ACLS): Clinical (To be retired)

Supraventricular arrhythmias: Pathology review

Ventricular arrhythmias: Pathology review

Heart blocks: Pathology review

Coronary artery disease: Clinical (To be retired)

Heart failure: Clinical (To be retired)

Syncope: Clinical (To be retired)

Pericardial disease: Clinical (To be retired)

Valvular heart disease: Clinical (To be retired)

Chest trauma: Clinical (To be retired)

Shock: Clinical (To be retired)

Peripheral vascular disease: Clinical (To be retired)

Leg ulcers: Clinical (To be retired)

Aortic aneurysms and dissections: Clinical (To be retired)

Cholinomimetics: Direct agonists

Cholinomimetics: Indirect agonists (anticholinesterases)

Muscarinic antagonists

Sympathomimetics: Direct agonists

Sympatholytics: Alpha-2 agonists

Adrenergic antagonists: Presynaptic

Adrenergic antagonists: Alpha blockers

Adrenergic antagonists: Beta blockers

ACE inhibitors, ARBs and direct renin inhibitors

Loop diuretics

Thiazide and thiazide-like diuretics

Calcium channel blockers

cGMP mediated smooth muscle vasodilators

Class I antiarrhythmics: Sodium channel blockers

Class II antiarrhythmics: Beta blockers

Class III antiarrhythmics: Potassium channel blockers

Class IV antiarrhythmics: Calcium channel blockers and others

Positive inotropic medications

Antiplatelet medications

Dermatology and plastic surgery

Blistering skin disorders: Clinical (To be retired)

Bites and stings: Clinical (To be retired)

Burns: Clinical (To be retired)

Endocrinology and ENT (Otolaryngology)

Diabetes mellitus: Clinical (To be retired)

Hyperthyroidism: Clinical (To be retired)

Hypothyroidism and thyroiditis: Clinical (To be retired)

Parathyroid conditions and calcium imbalance: Clinical (To be retired)

Adrenal insufficiency: Clinical (To be retired)

Neck trauma: Clinical (To be retired)

Insulins

Mineralocorticoids and mineralocorticoid antagonists

Glucocorticoids

Gastroenterology and general surgery

Abdominal pain: Clinical (To be retired)

Appendicitis: Clinical (To be retired)

Gastrointestinal bleeding: Clinical (To be retired)

Peptic ulcers and stomach cancer: Clinical (To be retired)

Inflammatory bowel disease: Clinical (To be retired)

Diverticular disease: Clinical (To be retired)

Gallbladder disorders: Clinical (To be retired)

Pancreatitis: Clinical (To be retired)

Cirrhosis: Clinical (To be retired)

Hernias: Clinical (To be retired)

Bowel obstruction: Clinical (To be retired)

Abdominal trauma: Clinical (To be retired)

Laxatives and cathartics

Antidiarrheals

Acid reducing medications

Hematology and oncology

Blood products and transfusion: Clinical (To be retired)

Venous thromboembolism: Clinical (To be retired)

Anticoagulants: Heparin

Anticoagulants: Warfarin

Anticoagulants: Direct factor inhibitors

Antiplatelet medications

Thrombolytics

Infectious diseases

Fever of unknown origin: Clinical (To be retired)

Infective endocarditis: Clinical (To be retired)

Pneumonia: Clinical (To be retired)

Tuberculosis: Pathology review

Diarrhea: Clinical (To be retired)

Urinary tract infections: Clinical (To be retired)

Meningitis, encephalitis and brain abscesses: Clinical (To be retired)

Bites and stings: Clinical (To be retired)

Skin and soft tissue infections: Clinical (To be retired)

Protein synthesis inhibitors: Aminoglycosides

Antimetabolites: Sulfonamides and trimethoprim

Antituberculosis medications

Miscellaneous cell wall synthesis inhibitors

Protein synthesis inhibitors: Tetracyclines

Cell wall synthesis inhibitors: Penicillins

Miscellaneous protein synthesis inhibitors

Cell wall synthesis inhibitors: Cephalosporins

DNA synthesis inhibitors: Metronidazole

DNA synthesis inhibitors: Fluoroquinolones

Herpesvirus medications

Azoles

Echinocandins

Miscellaneous antifungal medications

Anthelmintic medications

Antimalarials

Anti-mite and louse medications

Nephrology and urology

Hypernatremia: Clinical (To be retired)

Hyponatremia: Clinical (To be retired)

Hyperkalemia: Clinical (To be retired)

Hypokalemia: Clinical (To be retired)

Metabolic and respiratory acidosis: Clinical (To be retired)

Metabolic and respiratory alkalosis: Clinical (To be retired)

Toxidromes: Clinical (To be retired)

Medication overdoses and toxicities: Pathology review

Environmental and chemical toxicities: Pathology review

Acute kidney injury: Clinical (To be retired)

Kidney stones: Clinical (To be retired)

Adrenergic antagonists: Alpha blockers

Neurology and neurosurgery

Stroke: Clinical (To be retired)

Seizures: Clinical (To be retired)

Headaches: Clinical (To be retired)

Traumatic brain injury: Clinical (To be retired)

Neck trauma: Clinical (To be retired)

Lower back pain: Clinical (To be retired)

Spinal cord disorders: Pathology review

Anticonvulsants and anxiolytics: Barbiturates

Anticonvulsants and anxiolytics: Benzodiazepines

Nonbenzodiazepine anticonvulsants

Migraine medications

Osmotic diuretics

Antiplatelet medications

Thrombolytics

Opioid agonists, mixed agonist-antagonists and partial agonists

Opioid antagonists

Pulmonology and thoracic surgery

Asthma: Clinical (To be retired)

Chronic obstructive pulmonary disease (COPD): Clinical (To be retired)

Venous thromboembolism: Clinical (To be retired)

Acute respiratory distress syndrome: Clinical (To be retired)

Pleural effusion: Clinical (To be retired)

Pneumothorax: Clinical (To be retired)

Chest trauma: Clinical (To be retired)

Bronchodilators: Beta 2-agonists and muscarinic antagonists

Pulmonary corticosteroids and mast cell inhibitors

Rheumatology and orthopedic surgery

Joint pain: Clinical (To be retired)

Anatomy clinical correlates: Clavicle and shoulder

Anatomy clinical correlates: Axilla

Anatomy clinical correlates: Arm, elbow and forearm

Anatomy clinical correlates: Wrist and hand

Anatomy clinical correlates: Median, ulnar and radial nerves

Anatomy clinical correlates: Bones, joints and muscles of the back

Anatomy clinical correlates: Hip, gluteal region and thigh

Anatomy clinical correlates: Knee

Anatomy clinical correlates: Leg and ankle

Anatomy clinical correlates: Foot

Acetaminophen (Paracetamol)

Non-steroidal anti-inflammatory drugs

Glucocorticoids

Opioid agonists, mixed agonist-antagonists and partial agonists

Antigout medications

Transcript

Contributors

Cassidy Dermott

Anca-Elena Stefan, MD

Kaylee Neff

Zachary Kevorkian, MSMI

The vertebral column is a very complex boney structure with numerous articulating joints and multiple muscles that support it and the vertebral canal. As with any part of our body, all of these structures are prone to injury. If you aren’t familiar yet with what type of injuries, don’t worry, we got your back!

Let’s start with fractures involving the C1 vertebra, or atlas. These fractures are also called Jefferson or burst fractures. As you might remember, C1 is a ring shaped bone that has paired wedge shaped lateral masses connected by thin anterior and posterior arches and a transverse ligament. The C1 vertebra sustains the weight of the cranium, kind of like how the God Atlas of Greek mythology bore the weight of the world on his shoulders.

Now, because the taller side of the lateral mass is directed laterally, when there are vertical forces that compress the lateral masses between the occipital condyles above, and the C2 or axis below, this compressive force drives the two lateral masses of the C1 vertebrae apart, which can lead to fractures in one or both of the anterior or posterior arches. A classic example of this is striking the bottom of the pool with the top of your head when diving. If the force is really strong, it could even rupture the transverse ligament.

The Jefferson fracture doesn’t necessarily lead to spinal cord injury. This is because the diameter of the vertebral ring actually increases. However, spinal cord injury could happen if the transverse ligament ruptures as well, potentially resulting in the dens of the C2 vertebra, or the odontoid process, compressing on the spinal cord which we will get to shortly.

On a CT-scan, a C1 fracture looks something like this. You can see where the bone has been broken and how the lateral mass shifts laterally. Moving on, the C2 vertebra, or the axis, can also be fractured. C2 is called the axis because it has a bony protrusion called the dens of the axis that fits within the atlas ring, so this articulation allows rotation of the neck from side to side, like shaking your head no.

Elsevier

Copyright © 2023 Elsevier, except certain content provided by third parties

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX