Anatomy clinical correlates: Cerebral hemispheres

1,859views

00:00 / 00:00

Anatomy clinical correlates: Cerebral hemispheres

Back to the Basic Sciences

Non-cardiac chest pain and shortness of breath

Anatomy of the abdominal viscera: Blood supply of the foregut, midgut and hindgut
Anatomy of the abdominal viscera: Esophagus and stomach
Anatomy of the abdominal viscera: Innervation of the abdominal viscera
Anatomy of the diaphragm
Anatomy of the inferior mediastinum
Anatomy of the larynx and trachea
Anatomy of the lungs and tracheobronchial tree
Anatomy of the pharynx and esophagus
Anatomy of the pleura
Anatomy of the superior mediastinum
Bones and joints of the thoracic wall
Muscles of the thoracic wall
Vessels and nerves of the thoracic wall
Anatomy clinical correlates: Mediastinum
Anatomy clinical correlates: Pleura and lungs
Anatomy clinical correlates: Thoracic wall
Bronchioles and alveoli histology
Esophagus histology
Trachea and bronchi histology
Alveolar surface tension and surfactant
Anatomic and physiologic dead space
Breathing cycle and regulation
Diffusion-limited and perfusion-limited gas exchange
Gas exchange in the lungs, blood and tissues
Lung volumes and capacities
Pulmonary shunts
Regulation of pulmonary blood flow
Respiratory system anatomy and physiology
Ventilation
Ventilation-perfusion ratios and V/Q mismatch
Zones of pulmonary blood flow
Chewing and swallowing
Enteric nervous system
Esophageal motility
Gastric motility
Gastrointestinal system anatomy and physiology
Aortic dissections and aneurysms: Pathology review
Deep vein thrombosis and pulmonary embolism: Pathology review
Pleural effusion, pneumothorax, hemothorax and atelectasis: Pathology review
ECG axis
ECG basics
ECG cardiac hypertrophy and enlargement
ECG cardiac infarction and ischemia
ECG intervals
ECG normal sinus rhythm
ECG QRS transition
ECG rate and rhythm

Trauma

Anatomy of the abdominal viscera: Blood supply of the foregut, midgut and hindgut
Anatomy of the axilla
Anatomy of the pelvic cavity
Anatomy of the urinary organs of the pelvis
Anatomy of the vessels of the posterior abdominal wall
Arteries and veins of the pelvis
Deep structures of the neck: Root of the neck
Fascia, vessels and nerves of the upper limb
Introduction to the cranial nerves
Superficial structures of the neck: Anterior triangle
Superficial structures of the neck: Posterior triangle
Vessels and nerves of the forearm
Vessels and nerves of the gluteal region and posterior thigh
Vessels and nerves of the thoracic wall
Vessels and nerves of the vertebral column
Anatomy clinical correlates: Arm, elbow and forearm
Anatomy clinical correlates: Axilla
Anatomy clinical correlates: Bones, fascia and muscles of the neck
Anatomy clinical correlates: Cerebral hemispheres
Anatomy clinical correlates: Clavicle and shoulder
Anatomy clinical correlates: Eye
Anatomy clinical correlates: Female pelvis and perineum
Anatomy clinical correlates: Heart
Anatomy clinical correlates: Hip, gluteal region and thigh
Anatomy clinical correlates: Male pelvis and perineum
Anatomy clinical correlates: Mediastinum
Anatomy clinical correlates: Pleura and lungs
Anatomy clinical correlates: Skull, face and scalp
Anatomy clinical correlates: Spinal cord pathways
Anatomy clinical correlates: Thoracic wall
Anatomy clinical correlates: Vertebral canal
Anatomy clinical correlates: Vessels, nerves and lymphatics of the neck
Anatomy clinical correlates: Viscera of the neck
Anatomy clinical correlates: Wrist and hand
Eye conditions: Inflammation, infections and trauma: Pathology review
Pleural effusion, pneumothorax, hemothorax and atelectasis: Pathology review
Spinal cord disorders: Pathology review
Traumatic brain injury: Pathology review

Communication of bad news

Assessments

USMLE® Step 1 questions

0 / 11 complete

USMLE® Step 2 questions

0 / 11 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 11 complete

USMLE® Step 2 style questions USMLE

0 of 11 complete

A 77-year-old woman is brought to the emergency department for evaluation of left-sided numbness and unsteady gait. The patient was having dinner with family one hour ago when she suddenly developed numbness in the left side of her body and could no longer sense the temperature of her food. Past medical history includes diabetes mellitus type II, hypertension, and hyperlipidemia. The patient takes metformin, glipizide, amlodipine, losartan, and atorvastatin. Temperature is 37.0°C (98.6°F), pulse is 102/min, respirations are 15/min, and blood pressure is 190/100 mmHg. Neurological examination demonstrates deficits in touch, two-point discrimination, pain, and temperature on the left side of the body and face. Motor strength and speech are normal. Romberg sign is positive. An ischemic stroke involving which of the following areas of the brain is the most likely cause of her clinical findings?  

Transcript

Watch video only

The cerebral hemispheres are two symmetrical halves of the brain that contain billions of neurons and their connections, forming an amazing network of cells which help govern our everyday actions. These cerebral hemispheres consist of the cerebral cortex, subcortical white matter, and gray matter masses called the basal ganglia found throughout the subcortical white matter. Due to the complexity of our brains, the clinical conditions affecting our cerebral hemispheres lead to a variety of abnormal and strange symptoms, so understanding the anatomy of the cerebral hemisphere is crucial in understanding these conditions.

Let’s start with lesions of the cerebral cortex, which is the superficial gray matter of our brains containing billions of neurons responsible for processing information. Depending on which part of the cortex these lesions occur in, it can cause different clinical manifestations.

First, there are lesions of the prefrontal cortex, which is an area responsible for the makeup of a person’s personality and governs social behaviour. So, prefrontal cortex lesions cause frontal lobe syndrome which generally result in personality changes, and can specifically cause problems with planning, initiative, judgment, and social behaviour. Individuals have difficulty making decisions, and may become impulsive and aggressive. Individuals can also exhibit socially unacceptable behavior, where they no longer restrain from saying or doing inappropriate things, and may also no longer care about their clothing and appearance.

Injury to the prefrontal cortex may also contribute to the reemergence of primitive reflexes, such as the grasp reflex, suckling reflex, and groping reflex. Bilateral damage of the prefrontal cortex may lead to incontinence, gait apraxia, and can even lead to akinetic mutism, where awake individuals lack the will or motivation to move or speak, but will follow you with their eyes in response to noise.

Next up, there are injuries to the frontal eye fields which can be found on the middle frontal gyrus - specifically, in Brodmann's area 8. Possible causes of lesions to the frontal eye fields include stroke involving the middle cerebral artery, brain tumors, or injury during neurosurgery.

This area allows voluntary control of eye movements and conjugate gaze to the contralateral side. As fibres crossover to the contralateral lateral gaze center which is located in the paramedian pontine reticular formation in order to govern contralateral gaze.

Damage to the frontal eye field of one of the cerebral hemispheres will cause both eyes to deviate towards the same side as the lesion, and the inability to voluntarily move the eyes toward the contralateral side. This is in contrast to a lesion of the paramedian pontine reticular formation, which will cause the eyes to deviate to the contralateral side of the lesion, away from the injury. So, for example, when eyes are deviated to the right, the lesion can either involve the left paramedian pontine reticular formation or the right frontal eye field.

Let’s take a short break and see if you can remember clinical features associated with the prefrontal cortex lesions? What about the frontal eye field lesion?

Continuing with lesions of the cerebral cortex, let’s cover those that can lead to aphasia, which is the inability to understand and produce speech. These lesions usually affect the dominant hemisphere, which is the left hemisphere for right handed individuals and the right hemisphere for the left handed individuals.

First let's look at lesions to Broca’s area, or Brodmann’s area 44/45, which is the motor area responsible for controlling the muscles that allow us to produce words and speak. Located at the inferior frontal gyrus, a lesion to this area results in Broca’s aphasia, also known as motor, non fluent, or expressive aphasia.

In Broca’s aphasia, individuals have difficulties planning and executing movements necessary for the production of speech. Therefore, they would talk slowly with poor fluency, and there will be increased effort and pauses between words. The individual's comprehension of speech is intact, since Wernicke’s area is preserved, but repetition is usually impaired. Individuals can have difficulty naming objects and are usually aware of their problem, which can be very frustrating for them. You can use Broca to remind yourself of the Broken Boca, where Boca means “mouth” in Spanish. When Broca’s area is damaged, the nearby primary motor cortex may also be affected, so patients may also have accompanying symptoms of weakness or paralysis to the contralateral face and upper limb.

Then we can have a lesion to Wernicke’s area, or Brodmann’s area 22/39/40, which is responsible for processing and understanding both written and spoken language, allowing us to understand a sentence and say it back comprehensively. Wernicke’s area is located in the superior temporal gyrus, so a lesion here results in Wernicke’s aphasia, also known as sensory or receptive aphasia.

In Wernicke’s aphasia, individuals are fluent, well articulated, and may even speak faster than usual, but their comprehension and repetition of spoken and written language is impaired. Because of this, they don't find the right words to use and their speech appears meaningless, which has been described as “word salad”. Quick tip, you can use Wernicke to remember Word salad. Unlike Broca’s aphasia, individuals with Wernicke’s aphasia are unaware of their deficits, so they will speak as if nothing is wrong. On a quick note, the optic radiation is in close proximity to Wernicke’s area, so individuals can also have accompanying symptoms of contralateral superior quadrant visual field defects.

Both Broca’s and Wernicke’s areas are connected by a bundle of white matter tracts called the arcuate fasciculus, which is located beneath the supramarginal gyrus and the frontoparietal operculum. Lesions of the arCuate fasciculus cause Conduction aphasia. In conduction aphasia, individuals have preserved fluency and comprehension of speech, but the repetition of spoken language is severely impaired. They can also have difficulty naming objects and they are aware of their deficits.

And finally, when lesions are so extensive that they affect both Broca’s and Wernicke’s areas, that causes global aphasia. With global aphasia, there’s a loss of speech production, and loss of understanding of both written and spoken words. Individuals are not able to formulate, comprehend, or repeat both spoken and written language.

Let’s take another break and see if you can remember the common symptoms of Broca’s aphasia? What about Wernicke’s aphasia?

Sources

  1. "Human Anatomy & Physiology, 11th edition" Pearson (2018)
  2. "Costanzo Physiology, 7th edition" Elsevier (2021)
  3. "Principles of Anatomy and Physiology, 16th edition" Wiley (2020)
  4. "Harrison’s Principles of Internal Medicine, 20th edition" McGraw Hill (2018)
  5. "Revisiting the Functional Anatomy of the Human Brain: Toward a Meta-Networking Theory of Cerebral Functions" Physiol Rev (2020)
  6. "Medial prefrontal cortex in neurological diseases" Physiol Genomics (2019)
  7. "The Visual Cortex in Context" Annu Rev Vis Sci (2019)
  8. "From anatomy to function: the role of the somatosensory cortex in emotional regulation" Braz J Psychiatry (2019)