Anatomy clinical correlates: Clavicle and shoulder

8views

00:00 / 00:00

Videos

Notes

Anatomy clinical correlates: Clavicle and shoulder

Subspeciality surgery

Cardiothoracic surgery

Coronary artery disease: Clinical (To be retired)

Valvular heart disease: Clinical (To be retired)

Pericardial disease: Clinical (To be retired)

Aortic aneurysms and dissections: Clinical (To be retired)

Chest trauma: Clinical (To be retired)

Pleural effusion: Clinical (To be retired)

Pneumothorax: Clinical (To be retired)

Lung cancer: Clinical (To be retired)

Anatomy clinical correlates: Thoracic wall

Anatomy clinical correlates: Heart

Anatomy clinical correlates: Pleura and lungs

Anatomy clinical correlates: Mediastinum

Adrenergic antagonists: Beta blockers

ACE inhibitors, ARBs and direct renin inhibitors

cGMP mediated smooth muscle vasodilators

Lipid-lowering medications: Statins

Lipid-lowering medications: Fibrates

Miscellaneous lipid-lowering medications

Antiplatelet medications

Plastic surgery

Benign hyperpigmented skin lesions: Clinical (To be retired)

Skin cancer: Clinical (To be retired)

Blistering skin disorders: Clinical (To be retired)

Bites and stings: Clinical (To be retired)

Burns: Clinical (To be retired)

ENT (Otolaryngology)

Anatomy clinical correlates: Olfactory (CN I) and optic (CN II) nerves

Anatomy clinical correlates: Trigeminal nerve (CN V)

Anatomy clinical correlates: Facial (CN VII) and vestibulocochlear (CN VIII) nerves

Anatomy clinical correlates: Glossopharyngeal (CN IX), vagus (X), spinal accessory (CN XI) and hypoglossal (CN XII) nerves

Anatomy clinical correlates: Skull, face and scalp

Anatomy clinical correlates: Ear

Anatomy clinical correlates: Temporal regions, oral cavity and nose

Anatomy clinical correlates: Bones, fascia and muscles of the neck

Anatomy clinical correlates: Vessels, nerves and lymphatics of the neck

Anatomy clinical correlates: Viscera of the neck

Antihistamines for allergies

Neurosurgery

Stroke: Clinical (To be retired)

Seizures: Clinical (To be retired)

Headaches: Clinical (To be retired)

Traumatic brain injury: Clinical (To be retired)

Neck trauma: Clinical (To be retired)

Brain tumors: Clinical (To be retired)

Lower back pain: Clinical (To be retired)

Anatomy clinical correlates: Olfactory (CN I) and optic (CN II) nerves

Anatomy clinical correlates: Oculomotor (CN III), trochlear (CN IV) and abducens (CN VI) nerves

Anatomy clinical correlates: Trigeminal nerve (CN V)

Anatomy clinical correlates: Facial (CN VII) and vestibulocochlear (CN VIII) nerves

Anatomy clinical correlates: Glossopharyngeal (CN IX), vagus (X), spinal accessory (CN XI) and hypoglossal (CN XII) nerves

Anatomy clinical correlates: Vertebral canal

Anatomy clinical correlates: Spinal cord pathways

Anatomy clinical correlates: Cerebral hemispheres

Anatomy clinical correlates: Anterior blood supply to the brain

Anatomy clinical correlates: Cerebellum and brainstem

Anatomy clinical correlates: Posterior blood supply to the brain

Anticonvulsants and anxiolytics: Barbiturates

Anticonvulsants and anxiolytics: Benzodiazepines

Nonbenzodiazepine anticonvulsants

Migraine medications

Osmotic diuretics

Antiplatelet medications

Thrombolytics

Ophthalmology

Eye conditions: Refractive errors, lens disorders and glaucoma: Pathology review

Eye conditions: Retinal disorders: Pathology review

Eye conditions: Inflammation, infections and trauma: Pathology review

Anatomy clinical correlates: Olfactory (CN I) and optic (CN II) nerves

Anatomy clinical correlates: Oculomotor (CN III), trochlear (CN IV) and abducens (CN VI) nerves

Anatomy clinical correlates: Eye

Orthopedic surgery

Joint pain: Clinical (To be retired)

Lower back pain: Clinical (To be retired)

Anatomy clinical correlates: Clavicle and shoulder

Anatomy clinical correlates: Axilla

Anatomy clinical correlates: Arm, elbow and forearm

Anatomy clinical correlates: Wrist and hand

Anatomy clinical correlates: Median, ulnar and radial nerves

Anatomy clinical correlates: Bones, joints and muscles of the back

Anatomy clinical correlates: Hip, gluteal region and thigh

Anatomy clinical correlates: Knee

Anatomy clinical correlates: Leg and ankle

Anatomy clinical correlates: Foot

Trauma surgery

Traumatic brain injury: Clinical (To be retired)

Neck trauma: Clinical (To be retired)

Chest trauma: Clinical (To be retired)

Abdominal trauma: Clinical (To be retired)

Urology

Penile conditions: Pathology review

Prostate disorders and cancer: Pathology review

Testicular tumors: Pathology review

Kidney stones: Clinical (To be retired)

Renal cysts and cancer: Clinical (To be retired)

Urinary incontinence: Pathology review

Testicular and scrotal conditions: Pathology review

Anatomy clinical correlates: Male pelvis and perineum

Anatomy clinical correlates: Female pelvis and perineum

Anatomy clinical correlates: Other abdominal organs

Anatomy clinical correlates: Inguinal region

Androgens and antiandrogens

PDE5 inhibitors

Adrenergic antagonists: Alpha blockers

Vascular surgery

Peripheral vascular disease: Clinical (To be retired)

Leg ulcers: Clinical (To be retired)

Aortic aneurysms and dissections: Clinical (To be retired)

Anatomy clinical correlates: Anterior and posterior abdominal wall

Adrenergic antagonists: Beta blockers

Lipid-lowering medications: Statins

Lipid-lowering medications: Fibrates

Miscellaneous lipid-lowering medications

Antiplatelet medications

Thrombolytics

Assessments

Anatomy clinical correlates: Clavicle and shoulder

USMLE® Step 1 questions

0 / 8 complete

USMLE® Step 2 questions

0 / 9 complete

Questions

USMLE® Step 1 style questions USMLE

of complete

USMLE® Step 2 style questions USMLE

of complete

A 44-year-old man presents to his primary care physician with worsening left shoulder pain. He can no longer do bench presses or shoulder presses at the gym due to weakness and pain. The pain is primarily located over the lateral shoulder, is worse at night, and is preventing him from obtaining adequate rest. Past medical history is otherwise unremarkable. He has no history of recent trauma or surgeries to the left shoulder. The patient subsequently undergoes a MRI of the left shoulder, which reveals the following:  


Image reproduced from Radiopedia  
Which of the following physical examination maneuvers is most likely to yield a positive test, given this patient’s clinical findings?  

Memory Anchors and Partner Content

Transcript

Contributors

Viviana Popa, MD

Evan Debevec-McKenney

Ursula Florjanczyk, MScBMC

Our upper limbs are complex structures. They’ve got bones, muscles, fascia, nerves and blood vessels, and everything in between. Our upper limbs are prone to injury however, and oftentimes, even a small injury can have a huge functional deficit as we are so reliant on our upper limbs in everyday life. One of these commonly injured areas is the shoulder region.

Ok, so let’s start by taking a look at the injuries of the clavicle. Because of its subcutaneous position, the clavicle is prone to fractures, which are usually the result of direct or indirect trauma. An example of direct trauma is falling directly on the shoulder. Indirect trauma, however, may occur when falling on an outstretched hand, and the force of impact is transmitted through the bones of the forearm and the arm to the shoulder, which can result in a clavicle fracture. Most of these fractures occur in the middle third of the clavicle, particularly where the middle third meets the lateral third, which is the weakest point of the clavicle.

So with clavicular fractures, the medial fragment is usually pulled up by the sternocleidomastoid muscles, which can be apparent to the naked eye and palpable. At the same time, the trapezius muscle is having trouble holding the lateral fragment up, because of the weight of the limb, so the shoulder drops. And since the two fragments may glide under each other, the clavicle is also shortened. Additional features may signal complications of a clavicle fracture. For example, if the skin above the fracture seems to be tenting, meaning it looks like a tent, that suggests the fracture may become an open fracture in the future, and warrants surgical stabilization.

Alright, now, another thing that can happen in this region is an acromioclavicular dislocation, also called a “shoulder separation”. Just like the name says, the clavicle and acromion process separate, usually because of a direct blow to the shoulder, or a fall landing directly on the shoulder joint. And this may be seen in contact sports, like football, soccer or hockey.

Sources

  1. "Clavicle fractures" Orthopaedics & Traumatology: Surgery & Research (2017)
  2. "Bedside Ultrasound Diagnosis of Clavicle Fractures in the Pediatric Emergency Department" Academic Emergency Medicine (2010)
  3. "Treatment of Acute Midshaft Clavicle Fractures: Systematic Review of 2144 Fractures" Journal of Orthopaedic Trauma (2005)
  4. "Acute rotator cuff tears" BMJ (2017)
  5. "Surgery for rotator cuff tears" Cochrane Database of Systematic Reviews (2019)
  6. "DeLee & Drez's Orthopaedic Sports Medicine" W B Saunders Company (2015)
  7. "Treatment of Adhesive Capsulitis of the Shoulder" Journal of the American Academy of Orthopaedic Surgeons (2019)
  8. "Shoulder Pain and Mobility Deficits: Adhesive Capsulitis" Journal of Orthopaedic & Sports Physical Therapy (2013)
  9. "Clavicle fractures" Am Fam Physician (2008)
  10. "Treatment of clavicle fractures" Transl Med UniSa (2012)
Elsevier

Copyright © 2023 Elsevier, except certain content provided by third parties

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX