1views
00:00 / 00:00
Subspeciality surgery
Coronary artery disease: Clinical (To be retired)
Valvular heart disease: Clinical (To be retired)
Pericardial disease: Clinical (To be retired)
Aortic aneurysms and dissections: Clinical (To be retired)
Chest trauma: Clinical (To be retired)
Pleural effusion: Clinical (To be retired)
Pneumothorax: Clinical (To be retired)
Lung cancer: Clinical (To be retired)
Anatomy clinical correlates: Thoracic wall
Anatomy clinical correlates: Heart
Anatomy clinical correlates: Pleura and lungs
Anatomy clinical correlates: Mediastinum
Adrenergic antagonists: Beta blockers
ACE inhibitors, ARBs and direct renin inhibitors
cGMP mediated smooth muscle vasodilators
Lipid-lowering medications: Statins
Lipid-lowering medications: Fibrates
Miscellaneous lipid-lowering medications
Antiplatelet medications
Benign hyperpigmented skin lesions: Clinical (To be retired)
Skin cancer: Clinical (To be retired)
Blistering skin disorders: Clinical (To be retired)
Bites and stings: Clinical (To be retired)
Burns: Clinical (To be retired)
Anatomy clinical correlates: Olfactory (CN I) and optic (CN II) nerves
Anatomy clinical correlates: Trigeminal nerve (CN V)
Anatomy clinical correlates: Facial (CN VII) and vestibulocochlear (CN VIII) nerves
Anatomy clinical correlates: Glossopharyngeal (CN IX), vagus (X), spinal accessory (CN XI) and hypoglossal (CN XII) nerves
Anatomy clinical correlates: Skull, face and scalp
Anatomy clinical correlates: Ear
Anatomy clinical correlates: Temporal regions, oral cavity and nose
Anatomy clinical correlates: Bones, fascia and muscles of the neck
Anatomy clinical correlates: Vessels, nerves and lymphatics of the neck
Anatomy clinical correlates: Viscera of the neck
Antihistamines for allergies
Stroke: Clinical (To be retired)
Seizures: Clinical (To be retired)
Headaches: Clinical (To be retired)
Traumatic brain injury: Clinical (To be retired)
Neck trauma: Clinical (To be retired)
Brain tumors: Clinical (To be retired)
Lower back pain: Clinical (To be retired)
Anatomy clinical correlates: Olfactory (CN I) and optic (CN II) nerves
Anatomy clinical correlates: Oculomotor (CN III), trochlear (CN IV) and abducens (CN VI) nerves
Anatomy clinical correlates: Trigeminal nerve (CN V)
Anatomy clinical correlates: Facial (CN VII) and vestibulocochlear (CN VIII) nerves
Anatomy clinical correlates: Glossopharyngeal (CN IX), vagus (X), spinal accessory (CN XI) and hypoglossal (CN XII) nerves
Anatomy clinical correlates: Vertebral canal
Anatomy clinical correlates: Spinal cord pathways
Anatomy clinical correlates: Cerebral hemispheres
Anatomy clinical correlates: Anterior blood supply to the brain
Anatomy clinical correlates: Cerebellum and brainstem
Anatomy clinical correlates: Posterior blood supply to the brain
Anticonvulsants and anxiolytics: Barbiturates
Anticonvulsants and anxiolytics: Benzodiazepines
Nonbenzodiazepine anticonvulsants
Migraine medications
Osmotic diuretics
Antiplatelet medications
Thrombolytics
Eye conditions: Refractive errors, lens disorders and glaucoma: Pathology review
Eye conditions: Retinal disorders: Pathology review
Eye conditions: Inflammation, infections and trauma: Pathology review
Anatomy clinical correlates: Olfactory (CN I) and optic (CN II) nerves
Anatomy clinical correlates: Oculomotor (CN III), trochlear (CN IV) and abducens (CN VI) nerves
Anatomy clinical correlates: Eye
Joint pain: Clinical (To be retired)
Lower back pain: Clinical (To be retired)
Anatomy clinical correlates: Clavicle and shoulder
Anatomy clinical correlates: Axilla
Anatomy clinical correlates: Arm, elbow and forearm
Anatomy clinical correlates: Wrist and hand
Anatomy clinical correlates: Median, ulnar and radial nerves
Anatomy clinical correlates: Bones, joints and muscles of the back
Anatomy clinical correlates: Hip, gluteal region and thigh
Anatomy clinical correlates: Knee
Anatomy clinical correlates: Leg and ankle
Anatomy clinical correlates: Foot
Traumatic brain injury: Clinical (To be retired)
Neck trauma: Clinical (To be retired)
Chest trauma: Clinical (To be retired)
Abdominal trauma: Clinical (To be retired)
Penile conditions: Pathology review
Prostate disorders and cancer: Pathology review
Testicular tumors: Pathology review
Kidney stones: Clinical (To be retired)
Renal cysts and cancer: Clinical (To be retired)
Urinary incontinence: Pathology review
Testicular and scrotal conditions: Pathology review
Anatomy clinical correlates: Male pelvis and perineum
Anatomy clinical correlates: Female pelvis and perineum
Anatomy clinical correlates: Other abdominal organs
Anatomy clinical correlates: Inguinal region
Androgens and antiandrogens
PDE5 inhibitors
Adrenergic antagonists: Alpha blockers
Peripheral vascular disease: Clinical (To be retired)
Leg ulcers: Clinical (To be retired)
Aortic aneurysms and dissections: Clinical (To be retired)
Anatomy clinical correlates: Anterior and posterior abdominal wall
Adrenergic antagonists: Beta blockers
Lipid-lowering medications: Statins
Lipid-lowering medications: Fibrates
Miscellaneous lipid-lowering medications
Antiplatelet medications
Thrombolytics
Anatomy clinical correlates: Pleura and lungs
0 / 4 complete
0 / 9 complete
of complete
of complete
Anca-Elena Stefan, MD
Sam Gillespie, BSc
Jennifer Montague, PhD
Ursula Florjanczyk, MScBMC
Before you start watching this video, relax, and take a deep breath.
Think about the air filling up your lungs, which are located on either side of your thoracic cavity.
Now, we often take breathing for granted because it is under autonomic control, and it’s not until we have trouble breathing when we realize just how important our lungs are.
There are many conditions that can affect the lungs, which can have a huge impact on our day to day lives.
Now let’s look at some causes for lung ailments, starting with injuries of the cervical pleura and lung apex.
Both these structures project through the superior thoracic aperture into the neck.
So when there’s an injury involving the base of the neck, the lungs and pleural sacs can be injured as well, which can cause a pneumothorax.
The pleura is also exposed to potential injury in its inferior portion, because it descends below the costal margin in three regions, where a penetrating injury may enter into the pleural sac.
The first is the right part of the infrasternal angle, the other two parts are the right and left posterior costovertebral angles which are inferomedial to the 12th ribs and posterior to the superior poles of the kidneys.
So kidney surgery can pose a risk for pleural injury.
When discussing injuries to the pleura and lungs, it’s important to understand what pleuritic chest pain means.
Pleuritic chest pain is caused by irritation to the pleura, which results in a classical ‘sharp’, stabbing pain that gets worse when you breathe in, and is exacerbated even further by deep inhalation and exhalation.
Pleuritic chest pain can have multiple causes, including a pneumothorax, which is when there’s air trapped within the pleural cavity, or a pleural effusion, when fluid builds up in the pleural cavity.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.