00:00 / 00:00
Prerequisite basic sciences
Anticoagulants: Warfarin
0 / 22 complete
of complete
2022
2021
2020
2019
2018
2017
2016
warfarin as p. 444
warfarin p. 444
warfarin and p. 444
warfarin reversal p. 726
for warfarin toxicity p. 249
warfarin vs p. 444
warfarin adverse effect p. 444
warfarin p. 444
warfarin effect on p. 444
warfarin p. 638
warfarin for p. 444
warfarin as p. 444
warfarin reversal p. 726
for warfarin toxicity p. 249, 444
adverse effects of p. 435
coagulation cascade p. 420
cytochrome P-448 and p. 253
for DVT p. 697
griseofulvin and p. 197
heparin vs p. 444
PT measurement p. 433
reversal of p. 726
teratogenicity p. 638
therapeutic index of p. 235
toxicity treatment p. 249, 436
vitamin K antagonist p. 69
Anticoagulant medications are used to prevent blood clots from forming. These medications work by interfering with the normal function of plasma proteins called coagulation factors, which take part in secondary hemostasis. But let’s focus specifically on the anticoagulant warfarin, which works by preventing the synthesis of coagulation factors II, VII, IX and X, and anticoagulation proteins C and S. Now, to understand the regulation of clot formation we first need to talk briefly about hemostasis-- in which hemo refers to the blood, and stasis means to halt or stop. Hemostasis is divided into two phases: primary and secondary hemostasis.
Primary hemostasis involves the formation of a platelet plug around the site of an injured blood vessel, and secondary hemostasis reinforces the platelet plug with the creation of a protein mesh called fibrin. To get to fibrin, a set of coagulation factors each of which or enzymes need to be activated. These enzymes are activated via a process called proteolysis- which is where a portion of the protein is clipped off. In total, there are twelve coagulation factors numbered factors I-XII, but there’s no factor VI. Most of these factors are produced by liver cells, and it turns out that producing coagulation factors II, VII, IX, and X requires an enzyme that uses vitamin K.
Now, when vitamin K is absorbed from the digestive tract and travels to the liver, it’s in its dietary form and it’s called vitamin K quinone. An enzyme, called quinone reductase, takes electrons from NADPH, and donates them to vitamin K quinone, converting it into the reduced form which is called vitamin K hydroquinone. Then, vitamin K hydroquinone acts as a cofactor by donating its electrons to an enzyme called gamma glutamyl carboxylase, which converts the non-functional forms of coagulation factors II, VII, IX, and X into their functional forms. Gamma glutamyl carboxylase adds a carboxyl group, which is a chemical group made up of one carbon, and two oxygens, onto the end of glutamic acid residues on the proteins.
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.