28,997views
00:00 / 00:00
Subspeciality surgery
Coronary artery disease: Clinical (To be retired)
Valvular heart disease: Clinical (To be retired)
Pericardial disease: Clinical (To be retired)
Aortic aneurysms and dissections: Clinical (To be retired)
Chest trauma: Clinical (To be retired)
Pleural effusion: Clinical (To be retired)
Pneumothorax: Clinical (To be retired)
Lung cancer: Clinical (To be retired)
Anatomy clinical correlates: Thoracic wall
Anatomy clinical correlates: Heart
Anatomy clinical correlates: Pleura and lungs
Anatomy clinical correlates: Mediastinum
Adrenergic antagonists: Beta blockers
ACE inhibitors, ARBs and direct renin inhibitors
cGMP mediated smooth muscle vasodilators
Lipid-lowering medications: Statins
Lipid-lowering medications: Fibrates
Miscellaneous lipid-lowering medications
Antiplatelet medications
Benign hyperpigmented skin lesions: Clinical (To be retired)
Skin cancer: Clinical (To be retired)
Blistering skin disorders: Clinical (To be retired)
Bites and stings: Clinical (To be retired)
Burns: Clinical (To be retired)
Anatomy clinical correlates: Olfactory (CN I) and optic (CN II) nerves
Anatomy clinical correlates: Trigeminal nerve (CN V)
Anatomy clinical correlates: Facial (CN VII) and vestibulocochlear (CN VIII) nerves
Anatomy clinical correlates: Glossopharyngeal (CN IX), vagus (X), spinal accessory (CN XI) and hypoglossal (CN XII) nerves
Anatomy clinical correlates: Skull, face and scalp
Anatomy clinical correlates: Ear
Anatomy clinical correlates: Temporal regions, oral cavity and nose
Anatomy clinical correlates: Bones, fascia and muscles of the neck
Anatomy clinical correlates: Vessels, nerves and lymphatics of the neck
Anatomy clinical correlates: Viscera of the neck
Antihistamines for allergies
Stroke: Clinical (To be retired)
Seizures: Clinical (To be retired)
Headaches: Clinical (To be retired)
Traumatic brain injury: Clinical (To be retired)
Neck trauma: Clinical (To be retired)
Brain tumors: Clinical (To be retired)
Lower back pain: Clinical (To be retired)
Anatomy clinical correlates: Olfactory (CN I) and optic (CN II) nerves
Anatomy clinical correlates: Oculomotor (CN III), trochlear (CN IV) and abducens (CN VI) nerves
Anatomy clinical correlates: Trigeminal nerve (CN V)
Anatomy clinical correlates: Facial (CN VII) and vestibulocochlear (CN VIII) nerves
Anatomy clinical correlates: Glossopharyngeal (CN IX), vagus (X), spinal accessory (CN XI) and hypoglossal (CN XII) nerves
Anatomy clinical correlates: Vertebral canal
Anatomy clinical correlates: Spinal cord pathways
Anatomy clinical correlates: Cerebral hemispheres
Anatomy clinical correlates: Anterior blood supply to the brain
Anatomy clinical correlates: Cerebellum and brainstem
Anatomy clinical correlates: Posterior blood supply to the brain
Anticonvulsants and anxiolytics: Barbiturates
Anticonvulsants and anxiolytics: Benzodiazepines
Nonbenzodiazepine anticonvulsants
Migraine medications
Osmotic diuretics
Antiplatelet medications
Thrombolytics
Eye conditions: Refractive errors, lens disorders and glaucoma: Pathology review
Eye conditions: Retinal disorders: Pathology review
Eye conditions: Inflammation, infections and trauma: Pathology review
Anatomy clinical correlates: Olfactory (CN I) and optic (CN II) nerves
Anatomy clinical correlates: Oculomotor (CN III), trochlear (CN IV) and abducens (CN VI) nerves
Anatomy clinical correlates: Eye
Joint pain: Clinical (To be retired)
Lower back pain: Clinical (To be retired)
Anatomy clinical correlates: Clavicle and shoulder
Anatomy clinical correlates: Axilla
Anatomy clinical correlates: Arm, elbow and forearm
Anatomy clinical correlates: Wrist and hand
Anatomy clinical correlates: Median, ulnar and radial nerves
Anatomy clinical correlates: Bones, joints and muscles of the back
Anatomy clinical correlates: Hip, gluteal region and thigh
Anatomy clinical correlates: Knee
Anatomy clinical correlates: Leg and ankle
Anatomy clinical correlates: Foot
Traumatic brain injury: Clinical (To be retired)
Neck trauma: Clinical (To be retired)
Chest trauma: Clinical (To be retired)
Abdominal trauma: Clinical (To be retired)
Penile conditions: Pathology review
Prostate disorders and cancer: Pathology review
Testicular tumors: Pathology review
Kidney stones: Clinical (To be retired)
Renal cysts and cancer: Clinical (To be retired)
Urinary incontinence: Pathology review
Testicular and scrotal conditions: Pathology review
Anatomy clinical correlates: Male pelvis and perineum
Anatomy clinical correlates: Female pelvis and perineum
Anatomy clinical correlates: Other abdominal organs
Anatomy clinical correlates: Inguinal region
Androgens and antiandrogens
PDE5 inhibitors
Adrenergic antagonists: Alpha blockers
Peripheral vascular disease: Clinical (To be retired)
Leg ulcers: Clinical (To be retired)
Aortic aneurysms and dissections: Clinical (To be retired)
Anatomy clinical correlates: Anterior and posterior abdominal wall
Adrenergic antagonists: Beta blockers
Lipid-lowering medications: Statins
Lipid-lowering medications: Fibrates
Miscellaneous lipid-lowering medications
Antiplatelet medications
Thrombolytics
Anticonvulsants and anxiolytics: Benzodiazepines
0 / 24 complete
of complete
2022
2021
2020
2019
2018
2017
2016
Alaina Mueller
Brittany Norton, MFA
Maria Emfietzoglou, MD
Evan Debevec-McKenney
Robyn Hughes, MScBMC
Benzodiazepines are a class of medications that act as a central nervous system depressant.
They have a wide variety of uses including anxiolytic effects, or to relieve anxiety; as anticonvulsants, or to manage seizure disorders; as a hypnotic for insomnia; as an anesthetic; and to treat withdrawal syndromes.
They act by enhancing the main inhibitory neurotransmitter gamma-aminobutyric acid, or GABA, by binding to its receptor.
It’s pretty well-established that your brain’s really important.
It controls your feelings, your movements, your sleep, your memory… It controls everything, whether you’re aware of it or not.
The cells that make up our brain are called neurons.
Neurons communicate with each other through neurotransmitters.
When one neuron is stimulated, it’ll release excitatory neurotransmitters like glutamate which bind to receptors on the next neuron.
This causes the next neuron to depolarize and release its own excitatory neurotransmitters, propagating the signal throughout the brain.
Now, we also have inhibitory neurons that will shut down this chain of events.
These neurons release the main inhibitory neurotransmitter gamma-aminobutyric acid, or GABA, which binds to GABA receptors on other neurons.
These receptors are large, multi unit complexes that form ligand-gated ion channels that open up to let Cl- ions into the cell.
The influx of negatively charged ions causes hyperpolarization, where the cell’s membrane potential becomes more negative, which means it’s much more difficult for it to depolarize and fire off an action potential, meaning it’s less responsive to stimuli.
Alright, now there are cases where neurons in the brain start sending out more excitatory signals than normal.
This can occur due to either too much excitation by the excitatory neurotransmitters, or too little inhibition by the inhibitory neurotransmitters like GABA.
Excessive excitatory signals can cause psychiatric disorders like anxiety, and neurological disorders like seizures and epilepsy.
Okay, so one way we can decrease the excitatory signals is by enhancing the effect of inhibitory neurons through medication like benzodiazepines.
They are composed of a benzene ring that consists of six carbon atoms fused to a diazepine ring that is made up of 5 carbon atoms and two nitrogen atoms.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.