Antituberculosis medications

00:00 / 00:00

Flashcards

Antituberculosis medications

of complete

Questions

USMLE® Step 1 style questions USMLE

of complete

USMLE® Step 2 style questions USMLE

of complete

A 42-year-old man presents to his primary care provider due to worsening visual disturbances for the past two weeks. He has experienced blurry vision and difficulty differentiating between red and green lights at traffic intersections. Medical history is notable for active tuberculosis diagnosed seven weeks ago. He is currently taking multiple antituberculosis medications. Temperature is 37.0°C (98.6°F), blood pressure is 123/78 mmHg, and pulse is 72/min. Physical examination reveals reduced central visual acuity in both eyes. An Ishihara color perception test is performed, and the patient is noted to have red-green color blindness. Which of the following best describes the mechanism of action of the medication most likely responsible for this patient’s symptoms?  

External References

First Aid

2024

2023

2022

2021

Ethambutol p. 193, 194

Transcript

Watch video only

Antituberculosis medications are agents used to treat tuberculosis, a disease caused by the bacteria Mycobacterium tuberculosis.

Mycobacteria are an interesting bunch, they’re slender, rod-shaped, and need oxygen to survive, in other words, they’re “strict aerobes.”

They’ve got an unusually waxy cell wall, which is mainly a result of the production of mycolic acid.

This waxy cell wall makes them incredibly hardy, and allows them to resist weak disinfectants and survive on dry surfaces for months at a time.

Antituberculosis medications act mainly by preventing the production of mycolic acid and the synthesis of this cell wall.

Although about two billion people worldwide are infected with tuberculosis, or simply ‘TB, the vast majority, about 90-95%, don’t develop symptoms. And this is because usually the immune system can contain it.

So Mycobacterium tuberculosis is usually transmitted via inhalation, which is how they gain entry into the lungs.

TB can avoid the mucus traps and make its way to the deep airways and alveoli where we have macrophages which eat up foreign cells, digest, and destroy them.

With TB, they recognize foreign proteins on their cell surface, and phagocytize them, or essentially package them into a space called a phagosome.

With most cases, the macrophage then fuses the phagosome with a lysosome, which has hydrolytic enzymes that can pretty much break down any biochemical molecule.

TB’s tricky though, and once inside the macrophage, they produce a protein that inhibits this fusion, which allows the mycobacterium to survive.

It doesn’t just survive, though, it proliferates, and creates a localized infection.

Three weeks after initial infection, cell-mediated immunity kicks in, and immune cells surround the site of TB infection, creating a granuloma.

The tissue inside the middle dies as a result, a process referred to as caseous necrosis. This area is known as a “Ghon focus”.

In some cases, the mycobacteria is killed off by the immune system, and that’s the end of that.

In other cases, even though they were walled off, they remain viable, and are therefore still alive, but they’re just dormant. This stage of the disease is called latent TB.

Summary

Anti-tuberculosis (TB) medications are drugs used to treat tuberculosis. Common TB medications include Isoniazid (INH), Rifampin (RIF) Pyrazinamide (PZA), and Ethambutol (EMB). Other TB drugs include Streptomycin, Capreomycin, Amikacin, and Levofloxacin. TB drugs are typically administered in combination, which helps minimize resistance to one of the drugs.

Side effects of TB drugs include vitamin B6 deficiency for isoniazid. This is prevented by taking isoniazid with vitamin B6 supplements (pyridoxine). Other side effects include hepatotoxicity for isoniazid, ethambutol, and pyrazinamide; and thrombocytopenia and neutropenia for Rifampin.

Sources

  1. "Katzung & Trevor's Pharmacology Examination and Board Review,12th Edition" McGraw-Hill Education / Medical (2018)
  2. "Rang and Dale's Pharmacology" Elsevier (2019)
  3. "Goodman and Gilman's The Pharmacological Basis of Therapeutics, 13th Edition" McGraw-Hill Education / Medical (2017)
  4. "Treatment of Latent Tuberculosis Infection" Annals of Internal Medicine (2017)
  5. "Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis" Cold Spring Harbor Perspectives in Medicine (2015)
  6. "Molecular mechanism of the synergistic activity of ethambutol and isoniazid against Mycobacterium tuberculosis" Journal of Biological Chemistry (2018)
  7. "WHO consolidated guidelines on tuberculosis. Module 4" World Health Organization (2020)
Elsevier

Copyright © 2024 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX