Aortic valve disease

326,521views

test

00:00 / 00:00

Aortic valve disease

ETP Cardiovascular System

ETP Cardiovascular System

Introduction to the cardiovascular system
Anatomy of the heart
Anatomy of the coronary circulation
Anatomy clinical correlates: Heart
Anatomy of the superior mediastinum
Anatomy of the inferior mediastinum
Anatomy clinical correlates: Mediastinum
Development of the cardiovascular system
Fetal circulation
Cardiac muscle histology
Artery and vein histology
Arteriole, venule and capillary histology
Cardiovascular system anatomy and physiology
Lymphatic system anatomy and physiology
Coronary circulation
Blood pressure, blood flow, and resistance
Pressures in the cardiovascular system
Laminar flow and Reynolds number
Resistance to blood flow
Compliance of blood vessels
Control of blood flow circulation
Microcirculation and Starling forces
Measuring cardiac output (Fick principle)
Stroke volume, ejection fraction, and cardiac output
Cardiac contractility
Frank-Starling relationship
Cardiac preload
Cardiac afterload
Law of Laplace
Cardiac and vascular function curves
Altering cardiac and vascular function curves
Cardiac cycle
Cardiac work
Pressure-volume loops
Changes in pressure-volume loops
Physiological changes during exercise
Cardiovascular changes during hemorrhage
Cardiovascular changes during postural change
Normal heart sounds
Abnormal heart sounds
Action potentials in myocytes
Action potentials in pacemaker cells
Excitability and refractory periods
Cardiac excitation-contraction coupling
Electrical conduction in the heart
Cardiac conduction velocity
ECG basics
ECG rate and rhythm
ECG intervals
ECG QRS transition
ECG axis
ECG normal sinus rhythm
ECG cardiac infarction and ischemia
ECG cardiac hypertrophy and enlargement
Baroreceptors
Chemoreceptors
Renin-angiotensin-aldosterone system
Arterial disease
Angina pectoris
Stable angina
Unstable angina
Myocardial infarction
Prinzmetal angina
Coronary steal syndrome
Peripheral artery disease
Subclavian steal syndrome
Aneurysms
Aortic dissection
Vasculitis
Behcet's disease
Kawasaki disease
Hypertension
Hypertensive emergency
Renal artery stenosis
Coarctation of the aorta
Cushing syndrome
Conn syndrome
Pheochromocytoma
Polycystic kidney disease
Hypotension
Orthostatic hypotension
Abetalipoproteinemia
Familial hypercholesterolemia
Hypertriglyceridemia
Hyperlipidemia
Chronic venous insufficiency
Thrombophlebitis
Deep vein thrombosis
Lymphedema
Lymphangioma
Shock
Vascular tumors
Human herpesvirus 8 (Kaposi sarcoma)
Angiosarcomas
Truncus arteriosus
Transposition of the great vessels
Total anomalous pulmonary venous return
Tetralogy of Fallot
Hypoplastic left heart syndrome
Patent ductus arteriosus
Ventricular septal defect
Atrial septal defect
Atrial flutter
Atrial fibrillation
Premature atrial contraction
Atrioventricular nodal reentrant tachycardia (AVNRT)
Wolff-Parkinson-White syndrome
Ventricular tachycardia
Brugada syndrome
Premature ventricular contraction
Long QT syndrome and Torsade de pointes
Ventricular fibrillation
Atrioventricular block
Bundle branch block
Pulseless electrical activity
Tricuspid valve disease
Pulmonary valve disease
Mitral valve disease
Aortic valve disease
Dilated cardiomyopathy
Restrictive cardiomyopathy
Hypertrophic cardiomyopathy
Heart failure
Cor pulmonale
Endocarditis
Myocarditis
Rheumatic heart disease
Pericarditis and pericardial effusion
Cardiac tamponade
Dressler syndrome
Cardiac tumors
Acyanotic congenital heart defects: Pathology review
Cyanotic congenital heart defects: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Coronary artery disease: Pathology review
Peripheral artery disease: Pathology review
Valvular heart disease: Pathology review
Cardiomyopathies: Pathology review
Heart failure: Pathology review
Supraventricular arrhythmias: Pathology review
Ventricular arrhythmias: Pathology review
Heart blocks: Pathology review
Aortic dissections and aneurysms: Pathology review
Pericardial disease: Pathology review
Endocarditis: Pathology review
Hypertension: Pathology review
Shock: Pathology review
Vasculitis: Pathology review
Cardiac and vascular tumors: Pathology review
Dyslipidemias: Pathology review
Sympatholytics: Alpha-2 agonists
Adrenergic antagonists: Presynaptic
Adrenergic antagonists: Alpha blockers
Adrenergic antagonists: Beta blockers
ACE inhibitors, ARBs and direct renin inhibitors
Thiazide and thiazide-like diuretics
Calcium channel blockers
cGMP mediated smooth muscle vasodilators
Class I antiarrhythmics: Sodium channel blockers
Class II antiarrhythmics: Beta blockers
Class III antiarrhythmics: Potassium channel blockers
Class IV antiarrhythmics: Calcium channel blockers and others
Lipid-lowering medications: Statins
Lipid-lowering medications: Fibrates
Miscellaneous lipid-lowering medications
Positive inotropic medications
Cardiomyopathies: Clinical
Congenital heart defects: Clinical
Valvular heart disease: Clinical
Infective endocarditis: Clinical
Pericardial disease: Clinical
Chest trauma: Clinical
Hypertension: Clinical
Pulmonary hypertension
Aortic aneurysms and dissections: Clinical
Raynaud phenomenon
Peripheral vascular disease: Clinical
Heart failure: Clinical
Coronary artery disease: Clinical
Deep vein thrombosis and pulmonary embolism: Pathology review
Fascia, vessels and nerves of the upper limb
Vessels and nerves of the forearm
Vessels and nerves of the hand
Anatomy of the abdominal viscera: Blood supply of the foregut, midgut and hindgut
Fascia, vessels, and nerves of the lower limb
Vessels and nerves of the gluteal region and posterior thigh
Anatomy of the popliteal fossa
Ventilation
Ventilation-perfusion ratios and V/Q mismatch
Gas exchange in the lungs, blood and tissues
Oxygen binding capacity and oxygen content
Oxygen-hemoglobin dissociation curve
Carbon dioxide transport in blood
Trypanosoma cruzi (Chagas disease)
Yellow fever virus
Rickettsia rickettsii (Rocky Mountain spotted fever) and other Rickettsia species
Arteriovenous malformation
Cerebral circulation

Assessments

Flashcards

0 / 26 complete

USMLE® Step 1 questions

0 / 5 complete

High Yield Notes

15 pages

Flashcards

Aortic valve disease

0 of 26 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 5 complete

A 35-year-old man with Marfan syndrome presents with exertional dyspnea and pounding headaches for several months. His temperature is 37.0°C (98.6°F), pulse is 90/min, and blood pressure is 135/85 mmHg. On physical examination, the lungs are clear to auscultation. Cardiac auscultation reveals the murmur demonstrated below over the right sternal border. Palpation of the radial arteries shows a rapidly rising and falling arterial pulse. Which of the following is the most likely diagnosis?

 

External References

First Aid

2024

2023

2022

2021

Angina

aortic stenosis p. 296

aortic stenosis

presentation p. 722

Aortic stenosis

ejection click and p. 731

heart murmurs p. 296

macroangiopathic anemia p. 415

paradoxical splitting in p. 294

presentation p. 722

pulse pressure in p. 290

S4 heart sound and p. 731

systolic murmur in p. 295

Williams syndrome p. 304

Dyspnea

aortic stenosis p. 296

Heart murmurs p. 296

aortic stenosis p. 722

Transcript

Watch video only

The aortic valve is typically made up of three leaflets: the left, the right, and the posterior leaflet and it opens during systole to allow blood to be ejected to the body. During diastole, it closes to allow the heart to fill with blood and get ready for another systole. If the aortic valve doesn’t open all the way, it gets harder to pump out to the body and this is called aortic stenosis. If it doesn’t close all the way, then blood leaks back into the left ventricle called aortic valve regurgitation or aortic insufficiency.

Usually, the aortic valve opens to about 3-4 cm2, but with stenosis it can become less than 1 cm2. This is usually caused by mechanical stress over time, which damages endothelial cells around the valves, causing fibrosis and calcification, which hardens the valve and makes it more difficult to open completely. This type usually shows up in late adulthood, with patients over 60 years old.

Similarly, patients that have a bicuspid valve — with two leaflets — as opposed to a tricuspid — with three — are more at risk of fibrosis and calcification because the mechanical stress that’s usually distributed between three leaflets is now being split by two leaflets and therefore, they see more stress per leaflet. Another important cause of aortic stenosis is chronic rheumatic fever, which can cause repeated inflammation and repair, leading to fibrosis. In this case, the leaflets can actually fuse together — called commissural fusion — which is an important distinction from the type caused by mechanical stress over time.

When the valve fuses together or hardens, it doesn’t open as easily, right? And so as the left ventricle contracts, it creates this high pressure that eventually pushes on the valve until it finally snaps open, causing a characteristic “ejection click.” Since the blood has to flow through a narrow opening, there’s turbulence which creates noise, or a murmur, which gets initially louder as more blood flows past the opening, and then quieter as the amount of blood flowing subsides because less remains in the ventricle. This is called a crescendo-decrescendo murmur.

Since now it’s harder to open and push blood past this hardened valve, the left ventricle has to generate higher pressures each time it contracts to get the same amount of blood through. To accomplish this, the left ventricle can thicken its muscles, called concentric left ventricular hypertrophy. This happens because new sarcomeres are added in parallel to the existing ones.

Even though you have this bulked-up ventricle, the heart still might struggle to get enough blood through the narrowed opening and to the body, and ultimately to the vital organs. And that means that the person’s at risk of developing heart failure, and various symptoms related to whichever organ is involved.

For example, if there’s a reduction in blood flow to the brain, it could lead to syncope. And a reduction in blood flow through coronary arteries to the heart’s own myocardium could cause chest pain and angina. Patients might not initially experience symptoms at rest, only during exercise, because exercise requires more blood, right? And this heart isn’t able to increase blood flow through this small opening.

A final complication is called microangiopathic hemolytic anemia, which is essentially damage to red blood cells as they’re forced through the smaller valve, splitting them into smaller fragments called schistocytes leading to hemoglobinuria, which is hemoglobin in the urine. Treatment is usually replacement of the valve, which often doesn’t happen until after the onset of symptoms.

Sources

  1. "Robbins Basic Pathology" Elsevier (2017)
  2. "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  3. "Pathophysiology of Disease: An Introduction to Clinical Medicine 8E" McGraw-Hill Education / Medical (2018)
  4. "Aortic Stenosis: Pathophysiology, Diagnosis, and Therapy" The American Journal of Medicine (2017)
  5. "Medical Treatment of Aortic Stenosis" Circulation (2016)
  6. "Aortic Valve Sparing in Different Aortic Valve and Aortic Root Conditions" Journal of the American College of Cardiology (2016)
  7. "Functional Mitral Regurgitation After Aortic Valve Replacement for Aortic Insufficiency" Journal of Cardiothoracic and Vascular Anesthesia (2018)