Apnea, hypoventilation and pulmonary hypertension: Pathology review
1,925views
00:00 / 00:00
Questions
USMLE® Step 1 style questions USMLE
of complete
Memory Anchors and Partner Content
Transcript
Content Reviewers
Joseph, a 42 year old man comes to the clinic because he’s been waking up many times at night, which makes him very sleepy during the day.
His partner also complains that Joseph has always snored but recently it’s louder than ever.
On physical examination he has a BMI of 35 kilograms per square meter, and has a blood pressure of 140 over 90 millimeters of mercury.
You decide to conduct a sleep study, which reveals a very low partial pressure of oxygen.
Later, a 35 year old woman called Robin also comes to the clinic.
She tells you that, lately, she’s been experiencing shortness of breath and fatigue.
Robin is quite worried, and mentions that she has a congenital heart defect.
On physical examination, she has a mean pulmonary arterial pressure of 28 millimeters of mercury.
You decide to perform an electrocardiogram or ECG test, and a chest X-ray, which show that Robin has right ventricular hypertrophy.
Based on the presentation, both cases seem to have some respiratory disease, associated with some cardiovascular issues.
Now, for your exams, some important conditions include sleep apnea, obesity hypoventilation syndrome, and pulmonary hypertension.
So, let’s begin with sleep apnea!
This is when a person, during their sleep, experiences recurrent and intermittent episodes in which they stop breathing for more than 10 seconds.
In addition, since fresh air is not getting into the lungs, individuals with sleep apnea will have nocturnal hypoxia.
This puts the body under stress, which in turn responds by releasing epinephrine.
Now, the recurrent epinephrine surges have several effects.
Firstly, this wakes up the person so that they can breathe again.
This causes disrupted sleep, which in turn leads to somnolence or sleepiness during the day or while awake.
Secondly, the body tries to compensate for the hypoxia by increasing the amount of red blood cells, or erythrocytes, available to carry the oxygen in blood to our tissues.
Sources
- "Robbins Basic Pathology" Elsevier (2017)
- "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
- "Pathophysiology of Disease: An Introduction to Clinical Medicine 8E" McGraw-Hill Education / Medical (2018)
- "Diagnostic and Statistical Manual of Mental Disorders" A.P. Association and A.P.A.T.F.O.N.A. Statistics (1980)
- "Robbins Basic Pathology" Elsevier (2017)
- "Sleep Apnoea In The Older Adult" Drugs & Aging (2003)
- "Obesity hypoventilation syndrome" European Respiratory Review (2019)
- "Pathology of Pulmonary Hypertension" Clinics in Chest Medicine (2007)
- "Plexiform Lesions in Pulmonary Arterial Hypertension" The American Journal of Pathology (2011)
- "Heart rate and blood pressure responses during hypoxic cycles of a 3-week intermittent hypoxia breathing program in patients at risk for or with mild COPD" International Journal of Chronic Obstructive Pulmonary Disease (2015)
- "Cheyne-Stokes respiration in patients with congestive heart failure: causes and consequences" Clinics (2005)
- "Congestive Heart Failure and Central Sleep Apnea" Critical Care Clinics (2015)
- "Pulmonary hypertension due to lung diseases: Updated recommendations from the Cologne Consensus Conference 2018" International Journal of Cardiology (2018)
- "Update on Chronic Thromboembolic Pulmonary Hypertension" Circulation (2014)