Atrial fibrillation

1,002,138views

test

00:00 / 00:00

Atrial fibrillation

Watch later

Watch later

Serotonin and norepinephrine reuptake inhibitors
Monoamine oxidase inhibitors
Typical antipsychotics
Atypical antipsychotics
Lithium
Nonbenzodiazepine anticonvulsants
Anticonvulsants and anxiolytics: Barbiturates
Anticonvulsants and anxiolytics: Benzodiazepines
Psychomotor stimulants
Mood disorders: Clinical
Anxiety disorders: Clinical
Eating disorders: Clinical
Obsessive compulsive disorders: Clinical
Personality disorders: Clinical
Sleep disorders: Clinical
Substance misuse and addiction: Clinical
Somatic symptom disorders: Clinical
Sexual dysfunctions: Clinical
Opioid agonists, mixed agonist-antagonists and partial agonists
Opioid antagonists
Schizophrenia spectrum disorders: Clinical
Dissociative disorders: Clinical
Trauma- and stressor-related disorders: Clinical
Disruptive, impulse-control and conduct disorders: Clinical
Paraphilic disorders: Clinical
Toxidromes: Clinical
Medication overdoses and toxicities: Pathology review
Drug misuse, intoxication and withdrawal: Hallucinogens: Pathology review
Psychiatric emergencies: Pathology review
Potter sequence
Hyperphosphatemia
Hypophosphatemia
Hypernatremia
Hyponatremia
Hypermagnesemia
Hypomagnesemia
Hyperkalemia
Hypokalemia
Hypercalcemia
Hypocalcemia
Renal tubular acidosis
Minimal change disease
Diabetic nephropathy
Focal segmental glomerulosclerosis (NORD)
Amyloidosis
Membranous nephropathy
Lupus nephritis
Poststreptococcal glomerulonephritis
Rapidly progressive glomerulonephritis
IgA nephropathy (NORD)
Alport syndrome
Kidney stones
Hydronephrosis
Acute pyelonephritis
Chronic pyelonephritis
Prerenal azotemia
Renal azotemia
Acute tubular necrosis
Postrenal azotemia
Renal papillary necrosis
Renal cortical necrosis
Chronic kidney disease
Polycystic kidney disease
Multicystic dysplastic kidney
Medullary cystic kidney disease
Medullary sponge kidney
Renal artery stenosis
Renal cell carcinoma
Angiomyolipoma
Nephroblastoma (Wilms tumor)
WAGR syndrome
Beckwith-Wiedemann syndrome
Posterior urethral valves
Hypospadias and epispadias
Vesicoureteral reflux
Bladder exstrophy
Urinary incontinence
Neurogenic bladder
Lower urinary tract infection
Transitional cell carcinoma
Non-urothelial bladder cancers
Congenital renal disorders: Pathology review
Renal tubular defects: Pathology review
Renal tubular acidosis: Pathology review
Acid-base disturbances: Pathology review
Electrolyte disturbances: Pathology review
Renal failure: Pathology review
Nephrotic syndromes: Pathology review
Nephritic syndromes: Pathology review
Urinary incontinence: Pathology review
Urinary tract infections: Pathology review
Kidney stones: Pathology review
Renal and urinary tract masses: Pathology review
Renal system anatomy and physiology
Hydration
Body fluid compartments
Movement of water between body compartments
Renal clearance
Glomerular filtration
TF/Px ratio and TF/Pinulin
Measuring renal plasma flow and renal blood flow
Regulation of renal blood flow
Tubular reabsorption and secretion
Tubular secretion of PAH
Tubular reabsorption of glucose
Urea recycling
Tubular reabsorption and secretion of weak acids and bases
Proximal convoluted tubule
Loop of Henle
Distal convoluted tubule
Renin-angiotensin-aldosterone system
Sodium homeostasis
Potassium homeostasis
Phosphate, calcium and magnesium homeostasis
Osmoregulation
Antidiuretic hormone
Kidney countercurrent multiplication
Free water clearance
Vitamin D
Erythropoietin
Physiologic pH and buffers
Buffering and Henderson-Hasselbalch equation
The role of the kidney in acid-base balance
Acid-base map and compensatory mechanisms
Respiratory acidosis
Metabolic acidosis
Plasma anion gap
Respiratory alkalosis
Metabolic alkalosis
Osmotic diuretics
Carbonic anhydrase inhibitors
Loop diuretics
Thiazide and thiazide-like diuretics
Potassium sparing diuretics
ACE inhibitors, ARBs and direct renin inhibitors
Anatomy of the heart
Anatomy of the coronary circulation
Anatomy clinical correlates: Heart
Anatomy of the superior mediastinum
Anatomy of the inferior mediastinum
Anatomy clinical correlates: Mediastinum
Development of the cardiovascular system
Fetal circulation
Cardiovascular system anatomy and physiology
Lymphatic system anatomy and physiology
Coronary circulation
Blood pressure, blood flow, and resistance
Pressures in the cardiovascular system
Laminar flow and Reynolds number
Resistance to blood flow
Compliance of blood vessels
Control of blood flow circulation
Microcirculation and Starling forces
Measuring cardiac output (Fick principle)
Stroke volume, ejection fraction, and cardiac output
Cardiac contractility
Frank-Starling relationship
Cardiac preload
Cardiac afterload
Law of Laplace
Cardiac and vascular function curves
Altering cardiac and vascular function curves
Cardiac cycle
Cardiac work
Pressure-volume loops
Changes in pressure-volume loops
Physiological changes during exercise
Cardiovascular changes during hemorrhage
Cardiovascular changes during postural change
Normal heart sounds
Abnormal heart sounds
Action potentials in myocytes
Action potentials in pacemaker cells
Excitability and refractory periods
Cardiac excitation-contraction coupling
Electrical conduction in the heart
Cardiac conduction velocity
ECG basics
ECG rate and rhythm
ECG intervals
ECG QRS transition
ECG axis
ECG normal sinus rhythm
ECG cardiac infarction and ischemia
ECG cardiac hypertrophy and enlargement
Baroreceptors
Chemoreceptors
Arterial disease
Angina pectoris
Stable angina
Unstable angina
Myocardial infarction
Prinzmetal angina
Coronary steal syndrome
Peripheral artery disease
Subclavian steal syndrome
Aneurysms
Aortic dissection
Vasculitis
Behcet's disease
Kawasaki disease
Hypertension
Hypertensive emergency
Coarctation of the aorta
Cushing syndrome
Conn syndrome
Pheochromocytoma
Hypotension
Orthostatic hypotension
Abetalipoproteinemia
Familial hypercholesterolemia
Hypertriglyceridemia
Hyperlipidemia
Chronic venous insufficiency
Thrombophlebitis
Deep vein thrombosis
Lymphedema
Lymphangioma
Shock
Vascular tumors
Human herpesvirus 8 (Kaposi sarcoma)
Angiosarcomas
Truncus arteriosus
Transposition of the great vessels
Total anomalous pulmonary venous return
Tetralogy of Fallot
Hypoplastic left heart syndrome
Patent ductus arteriosus
Ventricular septal defect
Atrial septal defect
Atrial flutter
Atrial fibrillation
Premature atrial contraction
Atrioventricular nodal reentrant tachycardia (AVNRT)
Wolff-Parkinson-White syndrome
Ventricular tachycardia
Brugada syndrome
Premature ventricular contraction
Long QT syndrome and Torsade de pointes
Ventricular fibrillation
Atrioventricular block
Bundle branch block
Pulseless electrical activity
Tricuspid valve disease
Pulmonary valve disease
Mitral valve disease
Aortic valve disease
Dilated cardiomyopathy
Restrictive cardiomyopathy
Hypertrophic cardiomyopathy
Heart failure
Cor pulmonale
Endocarditis
Myocarditis
Rheumatic heart disease
Pericarditis and pericardial effusion
Cardiac tamponade
Dressler syndrome
Cardiac tumors
Acyanotic congenital heart defects: Pathology review
Cyanotic congenital heart defects: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Coronary artery disease: Pathology review
Peripheral artery disease: Pathology review
Valvular heart disease: Pathology review
Cardiomyopathies: Pathology review
Heart failure: Pathology review
Supraventricular arrhythmias: Pathology review
Ventricular arrhythmias: Pathology review
Heart blocks: Pathology review
Aortic dissections and aneurysms: Pathology review
Pericardial disease: Pathology review
Endocarditis: Pathology review
Hypertension: Pathology review
Shock: Pathology review
Vasculitis: Pathology review
Cardiac and vascular tumors: Pathology review
Dyslipidemias: Pathology review
Sympatholytics: Alpha-2 agonists
Adrenergic antagonists: Presynaptic
Adrenergic antagonists: Alpha blockers
Adrenergic antagonists: Beta blockers
Calcium channel blockers
cGMP mediated smooth muscle vasodilators
Class I antiarrhythmics: Sodium channel blockers
Class II antiarrhythmics: Beta blockers
Class III antiarrhythmics: Potassium channel blockers
Class IV antiarrhythmics: Calcium channel blockers and others
Lipid-lowering medications: Statins
Lipid-lowering medications: Fibrates
Miscellaneous lipid-lowering medications
Positive inotropic medications
Pulmonary embolism
Pulmonary edema
Pulmonary hypertension
Sleep apnea
Apnea of prematurity
Respiratory distress syndrome: Pathology review
Cystic fibrosis: Pathology review
Pneumonia: Pathology review
Tuberculosis: Pathology review
Deep vein thrombosis and pulmonary embolism: Pathology review
Pleural effusion, pneumothorax, hemothorax and atelectasis: Pathology review
Obstructive lung diseases: Pathology review
Restrictive lung diseases: Pathology review
Apnea, hypoventilation and pulmonary hypertension: Pathology review
Lung cancer and mesothelioma: Pathology review
Antihistamines for allergies
Bronchodilators: Beta 2-agonists and muscarinic antagonists
Bronchodilators: Leukotriene antagonists and methylxanthines
Respiratory system anatomy and physiology
Reading a chest X-ray
Lung volumes and capacities
Anatomic and physiologic dead space
Alveolar surface tension and surfactant
Compliance of lungs and chest wall
Combined pressure-volume curves for the lung and chest wall
Ventilation
Zones of pulmonary blood flow
Regulation of pulmonary blood flow
Pulmonary shunts
Ventilation-perfusion ratios and V/Q mismatch
Breathing cycle
Airflow, pressure, and resistance
Ideal (general) gas law
Boyle's law
Dalton's law
Henry's law
Graham's law
Gas exchange in the lungs, blood and tissues
Diffusion-limited and perfusion-limited gas exchange
Alveolar gas equation
Oxygen binding capacity and oxygen content
Oxygen-hemoglobin dissociation curve
Carbon dioxide transport in blood
Breathing control
Pulmonary chemoreceptors and mechanoreceptors
Pulmonary changes at high altitude and altitude sickness
Pulmonary changes during exercise
Choanal atresia
Laryngomalacia
Allergic rhinitis
Nasal polyps
Upper respiratory tract infection
Sinusitis
Laryngitis
Retropharyngeal and peritonsillar abscesses
Bacterial epiglottitis
Nasopharyngeal carcinoma
Tracheoesophageal fistula
Congenital pulmonary airway malformation
Pulmonary hypoplasia
Neonatal respiratory distress syndrome
Transient tachypnea of the newborn
Meconium aspiration syndrome
Apnea of prematurity
Sudden infant death syndrome
Acute respiratory distress syndrome
Decompression sickness
Cyanide poisoning
Methemoglobinemia
Emphysema
Chronic bronchitis
Asthma
Cystic fibrosis
Bronchiectasis
Alpha 1-antitrypsin deficiency
Restrictive lung diseases
Sarcoidosis
Idiopathic pulmonary fibrosis
Pneumonia
Croup
Bacterial tracheitis
Lung cancer
Pancoast tumor
Superior vena cava syndrome
Pneumothorax
Pleural effusion
Mesothelioma
Pulmonary embolism
Pulmonary edema
Pulmonary hypertension
Sleep apnea
Respiratory distress syndrome: Pathology review
Cystic fibrosis: Pathology review
Pneumonia: Pathology review
Tuberculosis: Pathology review
Deep vein thrombosis and pulmonary embolism: Pathology review
Pleural effusion, pneumothorax, hemothorax and atelectasis: Pathology review
Obstructive lung diseases: Pathology review
Restrictive lung diseases: Pathology review
Apnea, hypoventilation and pulmonary hypertension: Pathology review
Lung cancer and mesothelioma: Pathology review
Glucocorticoids
Protein synthesis inhibitors: Aminoglycosides
Antimetabolites: Sulfonamides and trimethoprim
Antituberculosis medications
Miscellaneous cell wall synthesis inhibitors
Protein synthesis inhibitors: Tetracyclines
Cell wall synthesis inhibitors: Penicillins
Miscellaneous protein synthesis inhibitors
Cell wall synthesis inhibitors: Cephalosporins
DNA synthesis inhibitors: Metronidazole
DNA synthesis inhibitors: Fluoroquinolones
Mechanisms of antibiotic resistance
Integrase and entry inhibitors
Nucleoside reverse transcriptase inhibitors (NRTIs)
Protease inhibitors
Hepatitis medications
Non-nucleoside reverse transcriptase inhibitors (NNRTIs)
Neuraminidase inhibitors
Herpesvirus medications
Azoles
Echinocandins
Miscellaneous antifungal medications
Anthelmintic medications
Antimalarials
Anti-mite and louse medications
Osmotic diuretics
Carbonic anhydrase inhibitors
Loop diuretics
Thiazide and thiazide-like diuretics
Potassium sparing diuretics
ACE inhibitors, ARBs and direct renin inhibitors

Assessments

Flashcards

0 / 15 complete

USMLE® Step 1 questions

0 / 3 complete

High Yield Notes

8 pages

Flashcards

Atrial fibrillation

0 of 15 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 3 complete

A 72-year-old female presents to the emergency department with shortness of breath and lightheadedness. The patient’s symptoms started an hour ago while she was watching television at home. She had a similar episode that occurred several weeks ago and resolved without medical intervention. Past medical history is notable for hypertension and hyperlipidemia. She is a non-smoker and drinks a glass of wine during the weekend. Temperature is 37.0°C (98.6°F), pulse is 144/min, respirations are 15/min, blood pressure is 122/62 mmHg, and oxygen saturation is 97% on room air. Physical exam is otherwise unremarkable, and initial electrocardiogram is demonstrated below:  


Image reproduced from Wikimedia Commons  

If left untreated, this patient is at greatest risk for which of the following complications?  

External References

First Aid

2024

2023

2022

2021

Anticoagulant drugs p. 418

atrial fibrillation p. 298

Arrhythmias

atrial fibrillation p. 731

Atrial fibrillation

β -blockers for p. 327

calcium channel blockers for p. 361

cardiac glycosides for p. NaN

ECG tracing of p. 298

embolic risk with p. 731

embolic stroke p. 525

hypertension as cause p. 304

jugular venous pulse in p. 292

potassium channel blockers for p. 327

sleep apnea p. 697

Coronary artery disease

atrial fibrillation and p. 298

Emboli

atrial fibrillation p. 298

Hypertension p. 304

atrial fibrillation and p. 296

Stroke p. 525

atrial fibrillation and p. 298

Thromboembolic event

atrial fibrillation p. 298

Transcript

Watch video only

The heart has four chambers: two upper chambers, the right and left atrium; and two lower chambers, the right and left ventricles. Fibrillation describes when the muscle fibers are all contracting at different times, so the end result is a quivering, or twitching movement.

Normally, an electrical signal is sent out from the sinus node in the right atrium. The signal then propagates out through both atria super fast, which allows them to depolarize at about the same time, so that you end up with a nice, coordinated contraction of the atria. That signal then moves down to the ventricles and causes them to contract shortly after.

With Atrial fibrillation, or A-fib or AF, signals move around the atria in a completely disorganized way that tends to override the sinus node. Instead of one big contraction, you get all these mini contractions that make it look like the atria are just quivering.

On an electrocardiogram, or ECG, normally the “P wave” corresponds to the atrial contraction. The “QRS complex,” which is the ventricular contraction, follows shortly after. During AF, all these small areas contract at different times so that you end up with an electrocardiogram that looks like scribbles, where each little peak corresponds to one spot in the atria twitching. Sometimes, a signal from one of these areas makes it down to the ventricles and cause ventricular contraction; these QRS complexes are interspersed at irregular intervals though, and usually at fairly high rates between 100 and 175 beats per minute.

In the normal heartbeat, a well-coordinated atrial contraction contributes a small amount of blood that’s called the “atrial kick.” People with AF lose this atrial kick; however, this loss isn’t life-threatening.

Okay, but how or why does this happen in the atrium? Why do the cells start depolarizing in a totally uncoordinated way? Well, the answer isn’t super cut-and-dry. There are a ton of risk factors that predispose someone to developing AF, and the exact mechanisms aren’t well understood. AF often happens alongside other cardiovascular diseases, including high blood pressure, coronary artery disease, valvular diseases — essentially anything that can create an inflammatory state or physically stretch out the atria and potentially damage the cells in the atria. Other, non-cardiovascular risk factors include: obesity, diabetes, and excessive alcohol consumption. Additionally, there also seems to be a genetic component.

These factors likely stress the cells in the atria, which can lead to tissue heterogeneity; or in other words, cells start taking on different electrical properties. For example, one cell might start conducting signals faster than its neighbor, and another cell might develop a shorter refractory period — the time following depolarization during which they can’t conduct another signal. These different tissue properties can ultimately cause the conduction in the atria to become unpredictable.

Normally, with tissue that’s the same, you’ll get essentially one wavefront of conduction that moves through the atria. According to the multiple wavelet theory, with different tissue properties, multiple wavelets develop. These wavelets conduct randomly around the atria, sometimes colliding and creating new “daughter wavelets.”

Along with the multiple wavelet theory, there’s also an automatic focus theory. According to the automatic focus theory, there’s a specific origin that is thought to initiate AF by rapid firing of electrical impulses that overtake the sinus node. Combined with risk factors and tissue heterogeneity, this can promote AF. It’s thought that a focused group of cells conduct cells in the cardiac muscle around pulmonary veins — yeah, pulmonary veins! Remember that these veins physically enter the left atrium, and where the pulmonary veins enter there is tissue that has really unique electrical properties.

Sources

  1. "Robbins Basic Pathology" Elsevier (2017)
  2. "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  3. "Pathophysiology of Disease: An Introduction to Clinical Medicine 8E" McGraw-Hill Education / Medical (2018)
  4. "Atrial Fibrillation" Annals of Internal Medicine (2017)
  5. "Atrial fibrillation" Journal of Biomedical Research (2014)
  6. "Risk Factors and Genetics of Atrial Fibrillation" Cardiology Clinics (2014)
  7. "Atrial Fibrillation" Circulation Research (2017)