Atrioventricular block

58,924views

test

00:00 / 00:00

Atrioventricular block

General CV system

General CV system

Introduction to the cardiovascular system
Anatomy of the heart
Anatomy of the coronary circulation
Anatomy clinical correlates: Heart
Anatomy of the superior mediastinum
Anatomy of the inferior mediastinum
Anatomy clinical correlates: Mediastinum
Development of the cardiovascular system
Fetal circulation
Cardiac muscle histology
Artery and vein histology
Arteriole, venule and capillary histology
Cardiovascular system anatomy and physiology
Lymphatic system anatomy and physiology
Coronary circulation
Blood pressure, blood flow, and resistance
Pressures in the cardiovascular system
Laminar flow and Reynolds number
Resistance to blood flow
Compliance of blood vessels
Control of blood flow circulation
Microcirculation and Starling forces
Measuring cardiac output (Fick principle)
Stroke volume, ejection fraction, and cardiac output
Cardiac contractility
Frank-Starling relationship
Cardiac preload
Cardiac afterload
Law of Laplace
Cardiac and vascular function curves
Altering cardiac and vascular function curves
Cardiac cycle
Cardiac work
Pressure-volume loops
Changes in pressure-volume loops
Physiological changes during exercise
Cardiovascular changes during hemorrhage
Cardiovascular changes during postural change
Normal heart sounds
Abnormal heart sounds
Action potentials in myocytes
Action potentials in pacemaker cells
Excitability and refractory periods
Cardiac excitation-contraction coupling
Electrical conduction in the heart
Cardiac conduction velocity
ECG basics
ECG rate and rhythm
ECG intervals
ECG QRS transition
ECG axis
ECG normal sinus rhythm
ECG cardiac infarction and ischemia
ECG cardiac hypertrophy and enlargement
Baroreceptors
Chemoreceptors
Renin-angiotensin-aldosterone system
Arterial disease
Angina pectoris
Stable angina
Unstable angina
Myocardial infarction
Prinzmetal angina
Coronary steal syndrome
Peripheral artery disease
Subclavian steal syndrome
Aneurysms
Aortic dissection
Vasculitis
Behcet's disease
Kawasaki disease
Hypertension
Hypertensive emergency
Renal artery stenosis
Coarctation of the aorta
Cushing syndrome
Conn syndrome
Pheochromocytoma
Polycystic kidney disease
Hypotension
Orthostatic hypotension
Abetalipoproteinemia
Familial hypercholesterolemia
Hypertriglyceridemia
Hyperlipidemia
Chronic venous insufficiency
Thrombophlebitis
Deep vein thrombosis
Lymphedema
Lymphangioma
Shock
Vascular tumors
Human herpesvirus 8 (Kaposi sarcoma)
Angiosarcomas
Truncus arteriosus
Transposition of the great vessels
Total anomalous pulmonary venous return
Tetralogy of Fallot
Hypoplastic left heart syndrome
Patent ductus arteriosus
Ventricular septal defect
Atrial septal defect
Atrial flutter
Atrial fibrillation
Premature atrial contraction
Atrioventricular nodal reentrant tachycardia (AVNRT)
Wolff-Parkinson-White syndrome
Ventricular tachycardia
Brugada syndrome
Premature ventricular contraction
Long QT syndrome and Torsade de pointes
Ventricular fibrillation
Atrioventricular block
Bundle branch block
Pulseless electrical activity
Tricuspid valve disease
Pulmonary valve disease
Mitral valve disease
Aortic valve disease
Dilated cardiomyopathy
Restrictive cardiomyopathy
Hypertrophic cardiomyopathy
Heart failure
Cor pulmonale
Endocarditis
Myocarditis
Rheumatic heart disease
Pericarditis and pericardial effusion
Cardiac tamponade
Dressler syndrome
Cardiac tumors
Acyanotic congenital heart defects: Pathology review
Cyanotic congenital heart defects: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Coronary artery disease: Pathology review
Peripheral artery disease: Pathology review
Valvular heart disease: Pathology review
Cardiomyopathies: Pathology review
Heart failure: Pathology review
Supraventricular arrhythmias: Pathology review
Ventricular arrhythmias: Pathology review
Heart blocks: Pathology review
Aortic dissections and aneurysms: Pathology review
Pericardial disease: Pathology review
Endocarditis: Pathology review
Hypertension: Pathology review
Shock: Pathology review
Vasculitis: Pathology review
Cardiac and vascular tumors: Pathology review
Dyslipidemias: Pathology review
Sympatholytics: Alpha-2 agonists
Adrenergic antagonists: Presynaptic
Adrenergic antagonists: Alpha blockers
Adrenergic antagonists: Beta blockers
ACE inhibitors, ARBs and direct renin inhibitors
Thiazide and thiazide-like diuretics
Calcium channel blockers
cGMP mediated smooth muscle vasodilators
Class I antiarrhythmics: Sodium channel blockers
Class II antiarrhythmics: Beta blockers
Class III antiarrhythmics: Potassium channel blockers
Class IV antiarrhythmics: Calcium channel blockers and others
Lipid-lowering medications: Statins
Lipid-lowering medications: Fibrates
Miscellaneous lipid-lowering medications
Positive inotropic medications
Cardiomyopathies: Clinical
Congenital heart defects: Clinical
Valvular heart disease: Clinical
Infective endocarditis: Clinical
Pericardial disease: Clinical
Chest trauma: Clinical
Hypertension: Clinical
Pulmonary hypertension
Aortic aneurysms and dissections: Clinical
Raynaud phenomenon
Peripheral vascular disease: Clinical
Heart failure: Clinical
Coronary artery disease: Clinical
Deep vein thrombosis and pulmonary embolism: Pathology review
Fascia, vessels and nerves of the upper limb
Vessels and nerves of the forearm
Vessels and nerves of the hand
Anatomy of the abdominal viscera: Blood supply of the foregut, midgut and hindgut
Fascia, vessels, and nerves of the lower limb
Vessels and nerves of the gluteal region and posterior thigh
Anatomy of the popliteal fossa
Ventilation
Ventilation-perfusion ratios and V/Q mismatch
Gas exchange in the lungs, blood and tissues
Oxygen binding capacity and oxygen content
Oxygen-hemoglobin dissociation curve
Carbon dioxide transport in blood
Trypanosoma cruzi (Chagas disease)
Yellow fever virus
Rickettsia rickettsii (Rocky Mountain spotted fever) and other Rickettsia species
Arteriovenous malformation
Cerebral circulation

Assessments

Flashcards

0 / 29 complete

USMLE® Step 1 questions

0 / 2 complete

CME Credits

0.25 / 0.5 complete

High Yield Notes

8 pages

Flashcards

Atrioventricular block

0 of 29 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 2 complete

A 14-year-old girl presents to the emergency department with lightheadedness. Since last night, she has felt fatigued and has noticed that every time she stands, she feels like she is about to pass out. She reports feeling short of breath after climbing a set of stairs for the past week. One month ago, she returned from summer camp in New Jersey, after which she began to develop fatigue and headaches. She takes acetaminophen for the headaches. Her temperature is 37.8°C (100°F), pulse is 40/min, respirations are 20/min, and blood pressure is 90/60 mmHg. She appears exhausted. Physical exam shows regular bradycardia without murmurs. No skin lesions are seen. An ECG is obtained and shows the following:  



Reproduced from: Wikimedia Commons

Which of the following species most likely transmitted this patient’s disease?  

External References

First Aid

2024

2023

2022

2021

Wenckebach AV block p. 298

Transcript

Watch video only

Each heartbeat starts with the heart’s pacemaker cells in the sinoatrial node, sometimes just called the SA node, in the right atrium. The SA node sends an electrical signal that propagates out through the walls of the heart and contracts both upper chambers, then moves through the atrioventricular node, or AV node, where the signal stops for a split second. Next, the signal goes down into the lower chambers, where it moves down the bundle of His, into the left and right bundle branches, and into each ventricles’ Purkinje fibers, causing them to contract as well. So, in a healthy heart, the upper chambers contract first, and then shortly after, the lower chambers contract.

On an ECG, the atrial contraction is seen as a “P wave,” and the ventricular contraction is seen as the “QRS complex.” The interval from the start of the P wave to the start of the QRS complex is called the “PR interval,” and is normally between 120 and 200 milliseconds, or 3-5 tiny boxes on the graph paper that it’s usually printed out on, since each box is 40 milliseconds or 0.04 seconds. Heart block describes a type of arrhythmia, or abnormal rhythm, that happens when the electrical signal gets delayed or blocked entirely at some point along the conduction system.

These blocks and delays usually happen because of some sort of damage or fibrosis to the electrical conduction system, the pathways that conduct the electrical signal. Lev’s disease, or Lenegre-lev syndrome, describes the large proportion of cases that are idiopathic and described as progressive cardiac conduction defects. This means it’s not clear exactly what causes it, but over time fibrosis, or scarring, develops in the conduction system which can delay or stop electrical conduction. This is usually a result of the aging process in the heart, and happens most often in the elderly, although some hereditary forms have been identified and can happen in younger people. However, another large proportion of cases are a result of ischemic heart disease, which is when the heart cells don’t receive enough oxygen and can die off, as with a heart attack. This again leaves scar tissue that can block the electrical signal. In fact, it’s estimated that about 20 percent of patients that have a heart attack go on to develop a heart block.

Finally, it’s worth pointing out that the electrical conduction system is kind of like the electrical wiring in the walls of a house, so it makes sense that diseases of the heart muscle walls — or, cardiomyopathies — and inflammation of the heart muscle — or, myocarditis — can both cause heart block.

An atrioventricular, or AV block, describes when the signal is delayed or blocked when it’s trying to move from the atria to the ventricles. First-degree AV block is when the signal is delayed, but still makes it to the ventricles. This type has a PR interval greater than 200 milliseconds. Even though these signals are delayed, in first degree block, they still reach the ventricles. First degree block isn’t usually associated with any symptoms. Treatment or management of first degree block might involve identifying electrolyte imbalances or causes due to medications, but it usually doesn’t require further treatment.

Second degree AV block can be split into two types. Type I, called “Mobitz I,” or sometimes “Wenckebach,” happens when the PR interval gets progressively longer with each beat until a P wave is blocked completely. So, maybe the first PR interval is 200 ms, then the next is 260 ms, then 300 ms, and finally the next one doesn’t make it to the ventricles, and you get what’s called a “dropped beat.”

Sources

  1. "Type I Wenckebach second-degree AV block: A matter of definition" Clinical Cardiology (2018)
  2. "Risk Factors Associated With Atrioventricular Block" JAMA Network Open (2019)
  3. "Vagally mediated atrioventricular block: pathophysiology and diagnosis" Heart (2013)
  4. "Robbins Basic Pathology" Elsevier (2017)
  5. "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  6. "Pathophysiology of Disease: An Introduction to Clinical Medicine 8E" McGraw-Hill Education / Medical (2018)