Autoimmune polyglandular syndrome type 1 (NORD)

25,706views

00:00 / 00:00

Videos

Notes

Autoimmune polyglandular syndrome type 1 (NORD)

Pathology

Adrenal gland disorders

Congenital adrenal hyperplasia

Primary adrenal insufficiency

Waterhouse-Friderichsen syndrome

Hyperaldosteronism

Adrenal cortical carcinoma

Cushing syndrome

Conn syndrome

Thyroid gland disorders

Thyroglossal duct cyst

Hyperthyroidism

Graves disease

Thyroid eye disease (NORD)

Toxic multinodular goiter

Thyroid storm

Hypothyroidism

Euthyroid sick syndrome

Hashimoto thyroiditis

Subacute granulomatous thyroiditis

Riedel thyroiditis

Postpartum thyroiditis

Thyroid cancer

Parathyroid gland disorders

Hyperparathyroidism

Hypoparathyroidism

Hypercalcemia

Hypocalcemia

Pancreatic disorders

Diabetes mellitus

Diabetic retinopathy

Diabetic nephropathy

Pituitary gland disorders

Hyperpituitarism

Pituitary adenoma

Hyperprolactinemia

Prolactinoma

Gigantism

Acromegaly

Hypopituitarism

Growth hormone deficiency

Pituitary apoplexy

Sheehan syndrome

Hypoprolactinemia

Constitutional growth delay

Diabetes insipidus

Syndrome of inappropriate antidiuretic hormone secretion (SIADH)

Gonadal dysfunction

Precocious puberty

Delayed puberty

Premature ovarian failure

Polycystic ovary syndrome

Androgen insensitivity syndrome

Kallmann syndrome

5-alpha-reductase deficiency

Polyglandular syndromes

Autoimmune polyglandular syndrome type 1 (NORD)

Endocrine tumors

Multiple endocrine neoplasia

Pancreatic neuroendocrine neoplasms

Zollinger-Ellison syndrome

Carcinoid syndrome

Pheochromocytoma

Neuroblastoma

Opsoclonus myoclonus syndrome (NORD)

Endocrine system pathology review

Adrenal insufficiency: Pathology review

Adrenal masses: Pathology review

Hyperthyroidism: Pathology review

Hypothyroidism: Pathology review

Thyroid nodules and thyroid cancer: Pathology review

Parathyroid disorders and calcium imbalance: Pathology review

Diabetes mellitus: Pathology review

Cushing syndrome and Cushing disease: Pathology review

Pituitary tumors: Pathology review

Hypopituitarism: Pathology review

Diabetes insipidus and SIADH: Pathology review

Multiple endocrine neoplasia: Pathology review

Neuroendocrine tumors of the gastrointestinal system: Pathology review

Assessments

Autoimmune polyglandular syndrome type 1 (NORD)

USMLE® Step 1 questions

0 / 2 complete

Questions

USMLE® Step 1 style questions USMLE

of complete

A 20-year-old woman presents to her primary care physician’s office for evaluation of a rash under her breasts. She first noticed the rash two days ago while bathing. The patient reports recurrent rashes of similar appearance affecting her face and limbs since the age of two. She was recently treated for oral thrush at a local clinic. Past medical history is significant for hypothyroidism managed with levothyroxine. Family history is significant for a brother who experienced similar cutaneous symptoms and died of fulminant hepatitis at the age of six. She does not use tobacco, alcohol, or illicit drugs. Vitals are within normal limits. Physical examination demonstrates red-brown, beefy, homogenous patches under the breasts and massive erythematous-desquamating dermatosis involving the face, limbs and nails. Genital examination shows multiple labial fissures. Intraepidermal injection of Candida antigens yields no reactogenicity. Which of the following is the most likely diagnosis?

Transcript

Content Reviewers

Rishi Desai, MD, MPH

Contributors

Charles Davis, MD

Evan Debevec-McKenney

Autoimmune polyglandular syndrome type 1, also called APS type 1, or autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, also called APECED, is a rare, genetically inherited condition.

Autoimmune means that the body’s immune system begins to attack its own tissues, and polyglandular means that multiple hormone-producing organs are affected.

Normally, your body should only react to things that are foreign or not-self.

This is maintained by a process called immune tolerance where only non-self-reactive B-cells and T-cells, are allowed to mature, whereas self-reactive ones aren’t.

For T-cells, this process takes place in the thymus, where a gene called AIRE, or autoimmune regulator, is expressed by thymic medullary epithelial cells.

When T-cells are developing, this gene leads to the production of thousands of the body’s proteins, and this serves as a test to see whether the T-cells react to self proteins.

If one does, that T-cell either undergoes apoptosis and dies, or it becomes a regulatory T-cell, or T-reg, that helps to eliminate other immune cells that react to self antigens.

In APS type 1, there’s a genetic mutation in AIRE that’s usually inherited in an autosomal recessive fashion.

This means that the thymic medullary epithelial cells lose the ability to display the body’s different self-proteins.

Since they can no longer test whether T-cells are self-reactive or not, the process of immune tolerance does not occur normally, and self-reactive T-cells are allowed to live.

Regulatory T-cells are no longer produced normally either, so the body loses a second mechanism for destroying autoimmune cells.

Elsevier

Copyright © 2023 Elsevier, except certain content provided by third parties

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX