Azoles

00:00 / 00:00

Videos

Notes

Azoles

Prerequisite basic sciences

Prerequisite basic sciences

Attributable risk (AR)

Bias in interpreting results of clinical studies

Bias in performing clinical studies

Clinical trials

Confounding

DALY and QALY

Direct standardization

Disease causality

Incidence and prevalence

Indirect standardization

Interaction

Mortality rates and case-fatality

Odds ratio

Positive and negative predictive value

Prevention

Relative and absolute risk

Selection bias

Sensitivity and specificity

Study designs

Test precision and accuracy

Acyanotic congenital heart defects: Pathology review

Adrenal masses: Pathology review

Bacterial and viral skin infections: Pathology review

Bone tumors: Pathology review

Coagulation disorders: Pathology review

Congenital neurological disorders: Pathology review

Cyanotic congenital heart defects: Pathology review

Extrinsic hemolytic normocytic anemia: Pathology review

Eye conditions: Inflammation, infections and trauma: Pathology review

Eye conditions: Refractive errors, lens disorders and glaucoma: Pathology review

Headaches: Pathology review

Intrinsic hemolytic normocytic anemia: Pathology review

Leukemias: Pathology review

Lymphomas: Pathology review

Macrocytic anemia: Pathology review

Microcytic anemia: Pathology review

Mixed platelet and coagulation disorders: Pathology review

Nasal, oral and pharyngeal diseases: Pathology review

Nephritic syndromes: Pathology review

Nephrotic syndromes: Pathology review

Non-hemolytic normocytic anemia: Pathology review

Pediatric brain tumors: Pathology review

Pediatric musculoskeletal disorders: Pathology review

Platelet disorders: Pathology review

Renal and urinary tract masses: Pathology review

Seizures: Pathology review

Viral exanthems of childhood: Pathology review

Pharmacodynamics: Agonist, partial agonist and antagonist

Pharmacodynamics: Desensitization and tolerance

Pharmacodynamics: Drug-receptor interactions

Pharmacokinetics: Drug absorption and distribution

Pharmacokinetics: Drug elimination and clearance

Pharmacokinetics: Drug metabolism

Prerequisite basic sciences

Growth hormone and somatostatin

Prerequisite basic sciences

Breastfeeding

Prerequisite basic sciences

Androgens and antiandrogens

Estrogens and antiestrogens

Miscellaneous cell wall synthesis inhibitors

Protein synthesis inhibitors: Tetracyclines

Cell wall synthesis inhibitors: Penicillins

Antihistamines for allergies

Acetaminophen (Paracetamol)

Non-steroidal anti-inflammatory drugs

Antimetabolites: Sulfonamides and trimethoprim

Antituberculosis medications

Cell wall synthesis inhibitors: Cephalosporins

Cell wall synthesis inhibitors: Penicillins

DNA synthesis inhibitors: Fluoroquinolones

DNA synthesis inhibitors: Metronidazole

Miscellaneous cell wall synthesis inhibitors

Miscellaneous protein synthesis inhibitors

Protein synthesis inhibitors: Aminoglycosides

Protein synthesis inhibitors: Tetracyclines

Bronchodilators: Beta 2-agonists and muscarinic antagonists

Bronchodilators: Leukotriene antagonists and methylxanthines

Pulmonary corticosteroids and mast cell inhibitors

Glucocorticoids

Bronchodilators: Beta 2-agonists and muscarinic antagonists

Bronchodilators: Leukotriene antagonists and methylxanthines

Azoles

Glucocorticoids

Pulmonary corticosteroids and mast cell inhibitors

Acetaminophen (Paracetamol)

Non-steroidal anti-inflammatory drugs

Antimetabolites: Sulfonamides and trimethoprim

Cell wall synthesis inhibitors: Cephalosporins

Cell wall synthesis inhibitors: Penicillins

Miscellaneous protein synthesis inhibitors

Protein synthesis inhibitors: Tetracyclines

Pharmacodynamics: Agonist, partial agonist and antagonist

Pharmacodynamics: Desensitization and tolerance

Pharmacodynamics: Drug-receptor interactions

Pharmacokinetics: Drug absorption and distribution

Pharmacokinetics: Drug elimination and clearance

Pharmacokinetics: Drug metabolism

Cell wall synthesis inhibitors: Cephalosporins

Glucocorticoids

Miscellaneous protein synthesis inhibitors

Anticonvulsants and anxiolytics: Barbiturates

Anticonvulsants and anxiolytics: Benzodiazepines

Nonbenzodiazepine anticonvulsants

Cell wall synthesis inhibitors: Cephalosporins

Cell wall synthesis inhibitors: Penicillins

Miscellaneous cell wall synthesis inhibitors

Assessments

Azoles

Flashcards

0 / 11 complete

Flashcards

Azoles

of complete

External References

First Aid

2022

2021

2020

2019

2018

2017

2016

Ketoconazole p. 195, 196, 682

cytochrome P p. -473, 253

gynecomastia from p. 673

PCOS p. 669

reproductive hormones and p. 679

Transcript

The “azole” antifungals are a family of medications used to treat mycoses, or fungal infections.

Mycoses can be superficial, like on the skin or hair, or develop into systemic infections in immunodeficient people.

Antifungals work either through fungistatic action, meaning that they inhibit fungal growth, or through fungicidal action, meaning they kill the fungi.

Azoles are divided into two major families of antifungals: imidazoles and triazoles.

Most fungal cells have a tough outer cell wall and an inner cell membrane.

The cell membrane is mostly made of phospholipids with some sterol or modified steroid molecules mixed in.

Humans have cholesterol, while fungi have ergosterol.

Both sterol molecules help keep the cell membrane stable at a wide range of temperatures.

Now, the precursor to both molecules is lanosterol.

Fungi have a cytochrome p450 enzyme called fourteen-alpha-demethylase in their mitochondria and endoplasmic reticulums, which converts lanosterol to ergosterol.

Without ergosterol, the structure of the cell membrane will be disrupted.

This will cause membrane-bound proteins, like ion channels, to stop working properly.

The membrane also becomes fragile, which eventually leads to inhibition of fungal growth.

The azole antifungals include imidazoles, like clotrimazole, isoconazole, miconazole, butoconazole, fenticonazole, and ketoconazole; as well as triazoles like fluconazole, itraconazole and voriconazole.

The only difference between the two groups is the imidazoles contain an imidazole ring, while triazoles contain triazole rings.

These medications work by inhibiting the fourteen-alpha-demethylase enzyme.

However, they also inhibit human cytochrome P450 enzymes to a lesser degree.

Summary

Azoles are synthetic antifungals with broad spectrum activity against various fungal infections. Azoles bind to the ergosterol molecule in the fungal cell membrane and cause holes to form, which damages the cell membrane and eventually kills the fungus. Examples of azoles include drugs like clotrimazole, fluconazole, and itraconazole. Some of the side effects of azoles include nausea and vomiting, gynecomastia, and hepatotoxicity.

Sources

  1. "Katzung & Trevor's Pharmacology Examination and Board Review,12th Edition" McGraw-Hill Education / Medical (2018)
  2. "Rang and Dale's Pharmacology" Elsevier (2019)
  3. "Goodman and Gilman's The Pharmacological Basis of Therapeutics, 13th Edition" McGraw-Hill Education / Medical (2017)
  4. "Therapeutic tools for oral candidiasis: Current and new antifungal drugs" Medicina Oral Patología Oral y Cirugia Bucal (2019)
  5. "Adverse interactions between antifungal azoles and vincristine: review and analysis of cases" Mycoses (2011)
Elsevier

Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX