Bronchodilators: Leukotriene antagonists and methylxanthines

20,240views

00:00 / 00:00

Videos

Notes

Bronchodilators: Leukotriene antagonists and methylxanthines

Pulmonology

Pulmonology

Asthma: Clinical (To be retired)

Chronic obstructive pulmonary disease (COPD): Clinical (To be retired)

Cystic fibrosis: Clinical (To be retired)

Diffuse parenchymal lung disease: Clinical (To be retired)

Venous thromboembolism: Clinical (To be retired)

Acute respiratory distress syndrome: Clinical (To be retired)

Pleural effusion: Clinical (To be retired)

Pneumothorax: Clinical (To be retired)

Pneumonia: Clinical (To be retired)

Tuberculosis: Pathology review

Lung cancer: Clinical (To be retired)

Pharmacology

Antihistamines for allergies

Bronchodilators: Beta 2-agonists and muscarinic antagonists

Bronchodilators: Leukotriene antagonists and methylxanthines

Pulmonary corticosteroids and mast cell inhibitors

Assessments

Bronchodilators: Leukotriene antagonists and methylxanthines

Flashcards

0 / 11 complete

Flashcards

Bronchodilators: Leukotriene antagonists and methylxanthines

of complete

External References

First Aid

2022

2021

2020

2019

2018

2017

2016

Theophylline p. 712

cytochrome P-448 and p. 253

therapeutic index of p. 235

Transcript

Contributors

Anuj Paul

Ursula Florjanczyk, MScBMC

Sam Gillespie, BSc

Evan Debevec-McKenney

In obstructive lung diseases like asthma, individuals suffer from reversible narrowing of the airways, medications like bronchodilators are helpful in keeping the airways open.

Now, based on their mechanism of action, bronchodilators can be broadly divided into four main groups; β2-agonists, muscarinic antagonists, leukotrienes antagonist and methylxanthines.

In this video, we’ll focus on the leukotriene modifying agents and methylxanthines.

So, if we take a look at the lungs, you’ve got the trachea, which branches off into right and left bronchi, and then continues to branch into thousands of bronchioles.

In the bronchioles you’ve got the lumen, the mucosa, which includes the inner lining of epithelial cells, as well as the lamina propria which contains many cells like the type 2 helper T cells, B cells, and mast cells.

Surrounding the lamina propria, there is a layer of smooth muscles and submucosa.

The submucosal layer contains mucus-secreting glands and blood vessels.

Now, the molecular pathway that leads to asthma is actually pretty complex but it is often initiated by an environmental trigger.

Allergens from environmental triggers, like air pollutants or cigarette smoke, are picked up by dendritic cells which present them to a type 2 helper T cell or Th2 cell in the lamina propria. These cells then produce cytokines like IL-4 and IL-5 which causes the inflammatory response.

IL-4 is especially important because it leads to the production of IgE antibodies by B cells, and these antibodies bind to FcεR1 receptors on mast cells to activate them.

Sources

  1. "Katzung & Trevor's Pharmacology Examination and Board Review,12th Edition" McGraw-Hill Education / Medical (2018)
  2. "Rang and Dale's Pharmacology" Elsevier (2019)
  3. "Goodman and Gilman's The Pharmacological Basis of Therapeutics, 13th Edition" McGraw-Hill Education / Medical (2017)
  4. "Triple therapy (ICS/LABA/LAMA) in COPD: time for a reappraisal" International Journal of Chronic Obstructive Pulmonary Disease (2018)
  5. "Exacerbations of COPD" International Journal of Chronic Obstructive Pulmonary Disease (2016)
  6. "Medication Regimens for Managing Acute Asthma" Respiratory Care (2018)
Elsevier

Copyright © 2023 Elsevier, except certain content provided by third parties

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX