70,478views
00:00 / 00:00
Cardiovascular system
Arterial disease
Angina pectoris
Stable angina
Unstable angina
Myocardial infarction
Prinzmetal angina
Coronary steal syndrome
Peripheral artery disease
Subclavian steal syndrome
Aneurysms
Aortic dissection
Vasculitis
Behcet's disease
Kawasaki disease
Hypertension
Hypertensive emergency
Renal artery stenosis
Coarctation of the aorta
Cushing syndrome
Conn syndrome
Pheochromocytoma
Polycystic kidney disease
Hypotension
Orthostatic hypotension
Abetalipoproteinemia
Familial hypercholesterolemia
Hypertriglyceridemia
Hyperlipidemia
Chronic venous insufficiency
Thrombophlebitis
Deep vein thrombosis
Lymphedema
Lymphangioma
Shock
Vascular tumors
Human herpesvirus 8 (Kaposi sarcoma)
Angiosarcomas
Truncus arteriosus
Transposition of the great vessels
Total anomalous pulmonary venous return
Tetralogy of Fallot
Hypoplastic left heart syndrome
Patent ductus arteriosus
Ventricular septal defect
Coarctation of the aorta
Atrial septal defect
Atrial flutter
Atrial fibrillation
Premature atrial contraction
Atrioventricular nodal reentrant tachycardia (AVNRT)
Wolff-Parkinson-White syndrome
Ventricular tachycardia
Brugada syndrome
Premature ventricular contraction
Long QT syndrome and Torsade de pointes
Ventricular fibrillation
Atrioventricular block
Bundle branch block
Pulseless electrical activity
Tricuspid valve disease
Pulmonary valve disease
Mitral valve disease
Aortic valve disease
Dilated cardiomyopathy
Restrictive cardiomyopathy
Hypertrophic cardiomyopathy
Heart failure
Cor pulmonale
Endocarditis
Myocarditis
Rheumatic heart disease
Pericarditis and pericardial effusion
Cardiac tamponade
Dressler syndrome
Cardiac tumors
Acyanotic congenital heart defects: Pathology review
Cyanotic congenital heart defects: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Coronary artery disease: Pathology review
Peripheral artery disease: Pathology review
Valvular heart disease: Pathology review
Cardiomyopathies: Pathology review
Heart failure: Pathology review
Supraventricular arrhythmias: Pathology review
Ventricular arrhythmias: Pathology review
Heart blocks: Pathology review
Aortic dissections and aneurysms: Pathology review
Pericardial disease: Pathology review
Endocarditis: Pathology review
Hypertension: Pathology review
Shock: Pathology review
Vasculitis: Pathology review
Cardiac and vascular tumors: Pathology review
Dyslipidemias: Pathology review
Bundle branch block
0 / 20 complete
0 / 1 complete
of complete
of complete
2022
2021
2020
2019
2018
2017
2016
Each heartbeat starts with the heart’s pacemaker cells in the sinoatrial node, sometimes called the SA node, in the right atrium. The SA node sends out an electrical signal that propagates out and contracts both upper chambers. The signal then moves through the atrioventricular node, or AV node, down into the lower chambers. Here it reaches the bundle of His and splits into the left and right bundle branches, which serve the left and the right ventricles. The signal then goes on to each ventricles’ Purkinje fibers, which leads to ventricular contraction.
Now, a “bundle branch block” describes when that electrical signal gets completely blocked or held up along one of the bundle branches. In most cases, this block, or delay, is caused by fibrosis, or scarring, that either occurs acutely or chronically. Acute causes can be things like ischemia, heart attack, or myocarditis, the inflammation of the heart tissue. Chronic conditions might lead to fibrosis of the heart tissue, because they all can cause slow and steady remodeling of the heart muscle; these include: hypertension, coronary artery disease, and cardiomyopathies.
If the block happens on the right side, it’s referred to as a right bundle branch block. With this type, the electrical signal starts at the SA node, contracts the atria, moves through the AV node, splits at the bundle of His, and then moves down the left bundle branch, but is blocked on the right bundle branch. This causes the left ventricle to contract first. The signal then spreads from the purkinje fibers of the left ventricle over to the right ventricle, which causes the right ventricle to contract after the left has contracted. So, with right bundle branch block, the right ventricle contracts late. If the block happened to be on the left side instead, which is called a left bundle branch block, the signal would be delayed on that side, and so the right ventricle would contract first, and then the left ventricle would contract late.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.