Bundle branch block

70,478views

00:00 / 00:00

Videos

Notes

Bundle branch block

Cardiovascular system

Vascular disorders

Arterial disease

Angina pectoris

Stable angina

Unstable angina

Myocardial infarction

Prinzmetal angina

Coronary steal syndrome

Peripheral artery disease

Subclavian steal syndrome

Aneurysms

Aortic dissection

Vasculitis

Behcet's disease

Kawasaki disease

Hypertension

Hypertensive emergency

Renal artery stenosis

Coarctation of the aorta

Cushing syndrome

Conn syndrome

Pheochromocytoma

Polycystic kidney disease

Hypotension

Orthostatic hypotension

Abetalipoproteinemia

Familial hypercholesterolemia

Hypertriglyceridemia

Hyperlipidemia

Chronic venous insufficiency

Thrombophlebitis

Deep vein thrombosis

Lymphedema

Lymphangioma

Shock

Vascular tumors

Human herpesvirus 8 (Kaposi sarcoma)

Angiosarcomas

Congenital heart defects

Truncus arteriosus

Transposition of the great vessels

Total anomalous pulmonary venous return

Tetralogy of Fallot

Hypoplastic left heart syndrome

Patent ductus arteriosus

Ventricular septal defect

Coarctation of the aorta

Atrial septal defect

Cardiac arrhythmias

Atrial flutter

Atrial fibrillation

Premature atrial contraction

Atrioventricular nodal reentrant tachycardia (AVNRT)

Wolff-Parkinson-White syndrome

Ventricular tachycardia

Brugada syndrome

Premature ventricular contraction

Long QT syndrome and Torsade de pointes

Ventricular fibrillation

Atrioventricular block

Bundle branch block

Pulseless electrical activity

Valvular disorders

Tricuspid valve disease

Pulmonary valve disease

Mitral valve disease

Aortic valve disease

Cardiomyopathies

Dilated cardiomyopathy

Restrictive cardiomyopathy

Hypertrophic cardiomyopathy

Heart failure

Heart failure

Cor pulmonale

Cardiac infections

Endocarditis

Myocarditis

Rheumatic heart disease

Pericardial disorders

Pericarditis and pericardial effusion

Cardiac tamponade

Dressler syndrome

Cardiac tumors

Cardiac tumors

Cardiovascular system pathology review

Acyanotic congenital heart defects: Pathology review

Cyanotic congenital heart defects: Pathology review

Atherosclerosis and arteriosclerosis: Pathology review

Coronary artery disease: Pathology review

Peripheral artery disease: Pathology review

Valvular heart disease: Pathology review

Cardiomyopathies: Pathology review

Heart failure: Pathology review

Supraventricular arrhythmias: Pathology review

Ventricular arrhythmias: Pathology review

Heart blocks: Pathology review

Aortic dissections and aneurysms: Pathology review

Pericardial disease: Pathology review

Endocarditis: Pathology review

Hypertension: Pathology review

Shock: Pathology review

Vasculitis: Pathology review

Cardiac and vascular tumors: Pathology review

Dyslipidemias: Pathology review

Assessments

Bundle branch block

Flashcards

0 / 20 complete

USMLE® Step 1 questions

0 / 1 complete

High Yield Notes

8 pages

Flashcards

Bundle branch block

of complete

Questions

USMLE® Step 1 style questions USMLE

of complete

A 71-year-old man presents to the emergency department with sudden onset chest pain. He was sitting at home watching television when he noticed the pain, characterized as a sharp pressure-like sensation in the left side of his chest. He is having difficulty catching his breath. Medical history is significant for hypertension, COPD, chronic kidney disease, and coronary artery disease. He takes amlodipine, lisinopril, aspirin, salmeterol, and albuterol. His father died from a heart attack at age 50. He smokes one pack of cigarettes per day and drinks occasionally. His temperature is 37.2°C (99°F), pulse is 105/min, respirations are 23/min, blood pressure is 90/60 mmHg, and oxygen saturation is 90% on room air. He appears pale and diaphoretic. Physical exam shows a holosystolic murmur at the left mid sternal border that increases with supine leg raise. Lung examination is normal. An ECG is obtained and shows the following:  



 Reproduced from: Wikimedia Commons

Which of the following is the most likely cause of this patient’s symptoms?  

External References

First Aid

2022

2021

2020

2019

2018

2017

2016

Left bundle branch block p. 296

Transcript

Content Reviewers

Rishi Desai, MD, MPH

Contributors

Tanner Marshall, MS

Vincent Waldman, PhD

Each heartbeat starts with the heart’s pacemaker cells in the sinoatrial node, sometimes called the SA node, in the right atrium. The SA node sends out an electrical signal that propagates out and contracts both upper chambers. The signal then moves through the atrioventricular node, or AV node, down into the lower chambers. Here it reaches the bundle of His and splits into the left and right bundle branches, which serve the left and the right ventricles. The signal then goes on to each ventricles’ Purkinje fibers, which leads to ventricular contraction.

Now, a “bundle branch block” describes when that electrical signal gets completely blocked or held up along one of the bundle branches. In most cases, this block, or delay, is caused by fibrosis, or scarring, that either occurs acutely or chronically. Acute causes can be things like ischemia, heart attack, or myocarditis, the inflammation of the heart tissue. Chronic conditions might lead to fibrosis of the heart tissue, because they all can cause slow and steady remodeling of the heart muscle; these include: hypertension, coronary artery disease, and cardiomyopathies.
If the block happens on the right side, it’s referred to as a right bundle branch block. With this type, the electrical signal starts at the SA node, contracts the atria, moves through the AV node, splits at the bundle of His, and then moves down the left bundle branch, but is blocked on the right bundle branch. This causes the left ventricle to contract first. The signal then spreads from the purkinje fibers of the left ventricle over to the right ventricle, which causes the right ventricle to contract after the left has contracted. So, with right bundle branch block, the right ventricle contracts late. If the block happened to be on the left side instead, which is called a left bundle branch block, the signal would be delayed on that side, and so the right ventricle would contract first, and then the left ventricle would contract late.

Sources

  1. "Robbins Basic Pathology" Elsevier (2017)
  2. "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  3. "Pathophysiology of Disease: An Introduction to Clinical Medicine 8E" McGraw-Hill Education / Medical (2018)
  4. "Left bundle branch block: from cardiac mechanics to clinical and diagnostic challenges" EP Europace (2017)
  5. "Left Bundle Branch Block" Circulation: Arrhythmia and Electrophysiology (2020)
  6. "Diagnosis of right bundle branch block: a concordance study" BMC Family Practice (2019)
Elsevier

Copyright © 2023 Elsevier, except certain content provided by third parties

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX