Cardiac afterload

20,954views

00:00 / 00:00

Cardiac afterload

PCV

PCV

Lung volumes and capacities
Asthma
Bronchodilators: Beta 2-agonists and muscarinic antagonists
Bronchodilators: Leukotriene antagonists and methylxanthines
Pulmonary corticosteroids and mast cell inhibitors
Emphysema
Pneumothorax
Chronic bronchitis
Diffusion-limited and perfusion-limited gas exchange
Obstructive lung diseases: Pathology review
Chronic obstructive pulmonary disease (COPD): Clinical
Ventilation-perfusion ratios and V/Q mismatch
Reading a chest X-ray
Regulation of pulmonary blood flow
Restrictive lung diseases
Compliance of lungs and chest wall
Gas exchange in the lungs, blood and tissues
Anatomy of the lungs and tracheobronchial tree
Diffuse parenchymal lung disease: Clinical
Combined pressure-volume curves for the lung and chest wall
Pulmonary hypertension
Pulmonary shunts
Pulmonary embolism
Tuberculosis: Pathology review
Long QT syndrome and Torsade de pointes
Cardiovascular system anatomy and physiology
Lymphatic system anatomy and physiology
Coronary circulation
Blood pressure, blood flow, and resistance
Pressures in the cardiovascular system
Laminar flow and Reynolds number
Resistance to blood flow
Compliance of blood vessels
Control of blood flow circulation
Microcirculation and Starling forces
Measuring cardiac output (Fick principle)
Stroke volume, ejection fraction, and cardiac output
Cardiac contractility
Frank-Starling relationship
Cardiac preload
Cardiac afterload
Law of Laplace
Cardiac and vascular function curves
Altering cardiac and vascular function curves
Cardiac work
Cardiac cycle
Pressure-volume loops
Changes in pressure-volume loops
Physiological changes during exercise
Cardiovascular changes during hemorrhage
Cardiovascular changes during postural change
Normal heart sounds
Abnormal heart sounds
Action potentials in myocytes
Action potentials in pacemaker cells
Excitability and refractory periods
Cardiac excitation-contraction coupling
Electrical conduction in the heart
Cardiac conduction velocity
ECG basics
ECG normal sinus rhythm
ECG intervals
ECG QRS transition
ECG axis
ECG rate and rhythm
ECG cardiac infarction and ischemia
ECG cardiac hypertrophy and enlargement
Baroreceptors
Chemoreceptors
Renin-angiotensin-aldosterone system
ACE inhibitors, ARBs and direct renin inhibitors
Thiazide and thiazide-like diuretics
Calcium channel blockers
Adrenergic antagonists: Beta blockers
cGMP mediated smooth muscle vasodilators
Class I antiarrhythmics: Sodium channel blockers
Class II antiarrhythmics: Beta blockers
Class III antiarrhythmics: Potassium channel blockers
Class IV antiarrhythmics: Calcium channel blockers and others
Lipid-lowering medications: Statins
Lipid-lowering medications: Fibrates
Miscellaneous lipid-lowering medications
Positive inotropic medications
Antihistamines for allergies
Acid reducing medications
Glucocorticoids
Atrial flutter
Atrial fibrillation
Premature atrial contraction
Atrioventricular nodal reentrant tachycardia (AVNRT)
Wolff-Parkinson-White syndrome
Ventricular tachycardia
Brugada syndrome
Premature ventricular contraction
Ventricular fibrillation
Atrioventricular block
Bundle branch block
Pulseless electrical activity
Truncus arteriosus
Transposition of the great vessels
Total anomalous pulmonary venous return
Tetralogy of Fallot
Hypoplastic left heart syndrome
Patent ductus arteriosus
Ventricular septal defect
Coarctation of the aorta
Atrial septal defect
Aortic dissection
Aneurysms
Tricuspid valve disease
Pulmonary valve disease
Mitral valve disease
Aortic valve disease
Dilated cardiomyopathy
Restrictive cardiomyopathy
Hypertrophic cardiomyopathy
Heart failure
Cor pulmonale
Endocarditis
Myocarditis
Rheumatic heart disease
Choanal atresia
Laryngomalacia
Allergic rhinitis
Nasal polyps
Upper respiratory tract infection
Sinusitis
Laryngitis
Retropharyngeal and peritonsillar abscesses
Bacterial epiglottitis
Nasopharyngeal carcinoma
Tracheoesophageal fistula
Congenital pulmonary airway malformation
Pulmonary hypoplasia
Neonatal respiratory distress syndrome
Transient tachypnea of the newborn
Meconium aspiration syndrome
Apnea of prematurity
Sudden infant death syndrome
Acute respiratory distress syndrome
Decompression sickness
Cyanide poisoning
Methemoglobinemia
Cystic fibrosis
Bronchiectasis
Alpha 1-antitrypsin deficiency
Sarcoidosis
Idiopathic pulmonary fibrosis
Pneumonia
Croup
Bacterial tracheitis
Lung cancer
Pancoast tumor
Superior vena cava syndrome
Pleural effusion
Mesothelioma
Pulmonary edema
Sleep apnea
Arterial disease
Angina pectoris
Stable angina
Unstable angina
Myocardial infarction
Prinzmetal angina
Coronary steal syndrome
Peripheral artery disease
Subclavian steal syndrome
Vasculitis
Behcet's disease
Kawasaki disease
Hypertension
Hypertensive emergency
Renal artery stenosis
Cushing syndrome
Conn syndrome
Pheochromocytoma
Polycystic kidney disease
Hypotension
Orthostatic hypotension
Abetalipoproteinemia
Familial hypercholesterolemia
Hypertriglyceridemia
Hyperlipidemia
Chronic venous insufficiency
Thrombophlebitis
Deep vein thrombosis
Lymphedema
Lymphangioma
Shock
Vascular tumors
Human herpesvirus 8 (Kaposi sarcoma)
Angiosarcomas
Pericarditis and pericardial effusion
Cardiac tamponade
Dressler syndrome
Cardiac tumors
Acyanotic congenital heart defects: Pathology review
Cyanotic congenital heart defects: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Coronary artery disease: Pathology review
Peripheral artery disease: Pathology review
Valvular heart disease: Pathology review
Cardiomyopathies: Pathology review
Heart failure: Pathology review
Supraventricular arrhythmias: Pathology review
Ventricular arrhythmias: Pathology review
Heart blocks: Pathology review
Aortic dissections and aneurysms: Pathology review
Pericardial disease: Pathology review
Endocarditis: Pathology review
Hypertension: Pathology review
Shock: Pathology review
Vasculitis: Pathology review
Cardiac and vascular tumors: Pathology review
Dyslipidemias: Pathology review
Choanal atresia
Laryngomalacia
Allergic rhinitis
Nasal polyps
Upper respiratory tract infection
Sinusitis
Laryngitis
Retropharyngeal and peritonsillar abscesses
Bacterial epiglottitis
Nasopharyngeal carcinoma
Tracheoesophageal fistula
Congenital pulmonary airway malformation
Pulmonary hypoplasia
Neonatal respiratory distress syndrome
Transient tachypnea of the newborn
Meconium aspiration syndrome
Apnea of prematurity
Sudden infant death syndrome
Acute respiratory distress syndrome
Decompression sickness
Cyanide poisoning
Methemoglobinemia
Emphysema
Chronic bronchitis
Asthma
Cystic fibrosis
Bronchiectasis
Alpha 1-antitrypsin deficiency
Restrictive lung diseases
Sarcoidosis
Idiopathic pulmonary fibrosis
Pneumonia
Croup
Bacterial tracheitis
Lung cancer
Pancoast tumor
Superior vena cava syndrome
Pneumothorax
Pleural effusion
Mesothelioma
Pulmonary embolism
Pulmonary edema
Pulmonary hypertension
Sleep apnea
Respiratory distress syndrome: Pathology review
Cystic fibrosis: Pathology review
Pneumonia: Pathology review
Tuberculosis: Pathology review
Deep vein thrombosis and pulmonary embolism: Pathology review
Pleural effusion, pneumothorax, hemothorax and atelectasis: Pathology review
Obstructive lung diseases: Pathology review
Restrictive lung diseases: Pathology review
Apnea, hypoventilation and pulmonary hypertension: Pathology review
Lung cancer and mesothelioma: Pathology review
Cholesterol metabolism
Fats and lipids
Chlamydia pneumoniae
Klebsiella pneumoniae
Pseudomonas aeruginosa
Legionella pneumophila (Legionnaires disease and Pontiac fever)
Bordetella pertussis (Whooping cough)
Mycobacterium tuberculosis (Tuberculosis)
Mycoplasma pneumoniae
Cytomegalovirus
Adenovirus
Rhinovirus
Influenza virus
Respiratory syncytial virus
Human parainfluenza viruses
Coronaviruses
Coccidioidomycosis and paracoccidioidomycosis
Blastomycosis
Histoplasmosis
Pneumocystis jirovecii (Pneumocystis pneumonia)
Aspergillus fumigatus
Cryptococcus neoformans
Cryptosporidium

Assessments

Flashcards

0 / 10 complete

USMLE® Step 1 questions

0 / 1 complete

High Yield Notes

10 pages

Flashcards

Cardiac afterload

0 of 10 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 1 complete

A researcher is studying the effect that different pathologies have on cardiac physiology. Which of the following conditions will most likely result in a decreased cardiac afterload?  

External References

First Aid

2024

2023

2022

2021

ACE inhibitors p. 628

preload/afterload effects p. 290

Afterload

auscultation and p. 295

cardiac output p. 289

hydralazine p. 323

in shock p. 317

Angiotensin II receptor blockers p. 628

preload/afterload effects p. 290

Vasodilators

afterload effects p. 290

Transcript

Watch video only

Cardiac afterload is one of the main factors that influence how much blood the heart pumps out with each heartbeat, or stroke.

Now, remember that the heart has two upper chambers: the left atrium, which receives oxygenated blood from the lungs via the pulmonary veins; and the right atrium, which receives deoxygenated blood from all of our organs and tissues via the superior and inferior vena cava.

From the atria, the blood flows into the lower chambers of the heart: the left ventricle, which pumps oxygenated blood to all our organs and tissues via the aorta; and the right ventricle, which pumps the deoxygenated blood back to the lungs via the pulmonary arteries.

Alright, now, each heartbeat consists of two phases: systole, which is when the heart contracts and pumps the blood out of the ventricles; and diastole, which is when the heart relaxes and ventricles fill with blood.

And as the left ventricle fills with blood during diastole, the pressure within it rises.

Then the left ventricle contracts, increasing the pressure within the left ventricle even more and forcing blood through the aortic valve into the aorta and whole arterial system.

So, cardiac afterload can be defined as the ventricular wall stress during systole or ejection.

And it can be calculated using the law of Laplace, which states that wall stress = pressure (P) x radius (R) / 2 x wall thickness (W).

Another way to say this is that cardiac afterload is directly proportional to the pressure inside the left ventricle during ejection as well as the radius of the left ventricle, and indirectly proportional to two times the ventricular wall thickness.

To visualize this, let’s look at a cross-section of the left ventricle, which looks a bit like a doughnut, with little dough.

A diet doughnut, if you will. Now, the little dough circle represents the wall of the left ventricle, and its thickness is the ventricular wall thickness, or W. Pressure, or P, on the other hand, refers to the pressure exerted by the ventricular wall on the ventricular cavity during systole.

And finally, the radius is the distance from the center of the ventricle to the outer edge. So...actually, the radius, or R, comprises of an inner radius, or Rin, which is the radius of the ventricular cavity, and the full radius is Rin plus the ventricular wall thickness.

And if you thought we were done with math, hold your horses. There’s one more formula we need to calculate the inner radius, which is: Rin=3 square root 3V / 4π, where V is the volume of the left ventricle, or Rin = (3V/4π)⅓.

And then we can add wall thickness to the inner radius to determine the left ventricular end-diastolic radius, or R.

Now, it’s important to note that this formula isn’t used in clinical practice.

Instead, clinicians simplified the equation by eliminating two variables: radius and wall thickness.

So for simplicity’s sake, we can say that left ventricular wall stress during ejection is proportional to left ventricular pressure during ejection.

And if we assume that left ventricular pressure during ejection is equal to aortic pressure during ejection, then we can say that left ventricular pressure during ejection is equal to what we commonly know as systolic blood pressure.

This leads us to a most commonly used definition of afterload, which says that afterload is the amount of resistance that the ventricles must overcome during systole.

Summary

Afterload is the amount of work the heart has to do to pump blood to the rest of the body. It's determined by the resistance to flow in the arteries. Blood vessels can become narrower (vasoconstriction) or wider (vasodilation), and this affects afterload.

The heart muscle contracts and relaxes to pump blood. During systole, contraction occurs, which ejects blood from the ventricles into the aorta and other arteries. Then, during diastole, relaxation occurs and blood flows back into the ventricles from the atria.

Afterload directly affects how much force is needed to eject blood from the ventricles during systole. If afterload is high, the ventricles have to work harder to pump blood out, and this can lead to heart failure. There are many factors that can influence the afterload, such as valvular heart diseases, hypertension, and narrowing of arteries by conditions such as atherosclerosis.

Sources

  1. "Medical Physiology" Elsevier (2016)
  2. "Physiology" Elsevier (2017)
  3. "Human Anatomy & Physiology" Pearson (2017)
  4. "Principles of Anatomy and Physiology" Wiley (2014)
  5. "Afterload mismatch and preload reserve: A conceptual framework for the analysis of ventricular function" Progress in Cardiovascular Diseases (1976)
  6. "Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies" The Lancet (2002)