7,482views
00:00 / 00:00
Cardiovascular system
Cardiovascular system anatomy and physiology
Lymphatic system anatomy and physiology
Coronary circulation
Blood pressure, blood flow, and resistance
Pressures in the cardiovascular system
Laminar flow and Reynolds number
Resistance to blood flow
Compliance of blood vessels
Control of blood flow circulation
Microcirculation and Starling forces
Measuring cardiac output (Fick principle)
Stroke volume, ejection fraction, and cardiac output
Cardiac contractility
Frank-Starling relationship
Cardiac preload
Cardiac afterload
Law of Laplace
Cardiac and vascular function curves
Altering cardiac and vascular function curves
Cardiac cycle
Cardiac work
Pressure-volume loops
Changes in pressure-volume loops
Physiological changes during exercise
Cardiovascular changes during hemorrhage
Cardiovascular changes during postural change
Normal heart sounds
Abnormal heart sounds
Action potentials in myocytes
Action potentials in pacemaker cells
Excitability and refractory periods
Cardiac excitation-contraction coupling
Electrical conduction in the heart
Cardiac conduction velocity
ECG basics
ECG normal sinus rhythm
ECG intervals
ECG QRS transition
ECG axis
ECG rate and rhythm
ECG cardiac infarction and ischemia
ECG cardiac hypertrophy and enlargement
Baroreceptors
Chemoreceptors
Renin-angiotensin-aldosterone system
Cardiac cycle
0 / 11 complete
of complete
2022
2021
2020
2019
2018
2017
2016
cardiac cycle p. 294
cardiac cycle p. 294
cardiac cycle p. 294
in cardiac cycle p. 294
cardiac cycle p. 294
Rachel Yancey
Megan Gullotto, MSMI
Victoria Cumberbatch
Filip Vasiljević, MD
A cardiac cycle is the sequence of mechanical and electrical events that occurs with every heartbeat. Now, the heart is shaped like a cone and it contains two upper chambers, called atria; and two lower chambers, called ventricles.
Now, the left atrium receives oxygenated blood from the lungs via the pulmonary veins; while the right atrium receives deoxygenated blood from all of our organs and tissues via the superior and inferior vena cava.
From the atria, the blood flows into the lower chambers of the heart: the left ventricle, which pumps oxygenated blood to all our organs and tissues via the aorta; and the right ventricle, which pumps the deoxygenated blood back to the lungs via the pulmonary arteries.
Alright, so each heartbeat consists of two phases: systole, which is when the heart contracts and pumps blood out of the ventricles; and diastole, which is when the heart relaxes and ventricles fill with blood. Now, the cardiac cycle graph is used to express events during one cardiac cycle.
Along the y-axis are aortic pressure, left atrial pressure, and left ventricular pressure, heart sounds, ventricular volume, right atrial pressure curve, and ECG; while along the x-axis is time.
But, before we continue, here’s something to keep in mind: since there are no valves separating the right atrium from the superior vena cava and the jugular veins, the jugular venous pulse will follow the same pressure changes as the ones that arise in the right atrium.
In other words, an increase in the atrial pressure will result in an increased jugular venous pulse, and vice versa. Therefore, below the right atrial pressure curve let’s write JVP for jugular venous pulse.
The cardiac cycle is a repeating process by which the heart pumps blood into circulation. It consists of two phases: the diastole (relaxation) phase and the systole (contraction) phase.
During diastole, major events include isovolumetric ventricular relaxation and ventricular filling, which enables the heart to relax and ventricles to get filled with blood. During systole, the main events are isovolumetric ventricular contraction and systolic ejection, meaning the heart contracts and pumps the blood out of the ventricles.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.