Cardiac work

00:00 / 00:00

Flashcards

Cardiac work

of complete

Questions

USMLE® Step 1 style questions USMLE

of complete

A researcher is conducting a study on cardiac physiology. The test subject has a heart rate of H and an ejection fraction of F. The subject’s pressure-volume loop is shown below. Which of the following best approximates the cardiac work (also termed stroke work) performed by this patient’s heart?


External Links

Transcript

Watch video only

Cardiac work, also known as stroke work, is similar to the concept of work in physics. In physics, work is defined as force times distance.

Stroke work can be thought of as the work performed by the left ventricle to eject a volume of blood, defined as stroke volume multiplied by mean aortic pressure.

And here, stroke volume corresponds to distance, whereas mean aortic pressure corresponds to force. Stroke work is best represented by a pressure-volume loop.

Pressure- volume loops are graphs, where the pressure inside the left ventricle is on the y axis and the volume of the left ventricle is on the x axis.

Each loop represents changes in ventricular pressure and volume over the course of one cardiac cycle, or one heartbeat, which includes both ventricular systole, or contraction, and diastole, or relaxation.

The lower right hand corner is the end-diastolic point, and it’s the point in the cardiac cycle when diastole is over. Αt this point, the mitral valve between the left atrium and the left ventricle, closes, leaving the left ventricle filled with the maximum volume of blood, called the end-diastolic volume.

And then, systole begins, which is when the left ventricle contracts to push that blood into the aorta. Ventricular contraction makes the pressure shoot up, but for a brief period of time, both the mitral and aortic valves are closed, so left ventricular volume doesn’t change.

This phase is isovolumetric contraction, but it doesn’t last long, because eventually the pressure inside the left ventricle exceeds aortic pressure, making the aortic valve pop open, and that starts the ejection phase.

During the ejection phase, blood from the left ventricle goes into the aorta, decreasing left ventricular volume. The left ventricle continues to contract, so ventricular pressure rises further, but then falls slightly.

Finally, when aortic pressure exceeds left ventricular pressure, the aortic valve closes, marking the end of systole, or the end-systolic point.

At this point, left ventricular pressure is called end-systolic pressure, and left ventricular volume is called end-systolic volume. And the difference between end-diastolic volume and end-systolic volume is the stroke volume.

Summary

The cardiac cycle, also called the stroke work, is the work performed by the heart's left ventricle during an ejection of a blood volume. It is the performance of the heart from the beginning of one heartbeat to the beginning of the next, and equals to the product of the mean aortic pressure and stroke volume, which is the amount of blood pumped by the left ventricle in one beat. Cardiac work done in a full minute will be referred to as cardiac minute work. It is equal to the product of mean aortic pressure and cardiac output, since the cardiac output equals heartbeats in one minute times the stroke volume.

Sources

  1. "Medical Physiology" Elsevier (2016)
  2. "Physiology" Elsevier (2017)
  3. "Human Anatomy & Physiology" Pearson (2018)
  4. "Principles of Anatomy and Physiology" Wiley (2014)
Elsevier

Copyright © 2024 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX