00:00 / 00:00
Pathology
Atrioventricular block
Bundle branch block
Pulseless electrical activity
Atrial fibrillation
Atrial flutter
Atrioventricular nodal reentrant tachycardia (AVNRT)
Premature atrial contraction
Wolff-Parkinson-White syndrome
Brugada syndrome
Long QT syndrome and Torsade de pointes
Premature ventricular contraction
Ventricular fibrillation
Ventricular tachycardia
Cardiac tumors
Shock
Arterial disease
Aneurysms
Aortic dissection
Angina pectoris
Coronary steal syndrome
Myocardial infarction
Prinzmetal angina
Stable angina
Unstable angina
Abetalipoproteinemia
Familial hypercholesterolemia
Hyperlipidemia
Hypertriglyceridemia
Coarctation of the aorta
Conn syndrome
Cushing syndrome
Hypertension
Hypertensive emergency
Pheochromocytoma
Polycystic kidney disease
Renal artery stenosis
Hypotension
Orthostatic hypotension
Lymphangioma
Lymphedema
Peripheral artery disease
Subclavian steal syndrome
Nutcracker syndrome
Superior mesenteric artery syndrome
Angiosarcomas
Human herpesvirus 8 (Kaposi sarcoma)
Vascular tumors
Behcet's disease
Kawasaki disease
Vasculitis
Chronic venous insufficiency
Deep vein thrombosis
Thrombophlebitis
Acyanotic congenital heart defects: Pathology review
Aortic dissections and aneurysms: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Cardiac and vascular tumors: Pathology review
Cardiomyopathies: Pathology review
Coronary artery disease: Pathology review
Cyanotic congenital heart defects: Pathology review
Dyslipidemias: Pathology review
Endocarditis: Pathology review
Heart blocks: Pathology review
Heart failure: Pathology review
Hypertension: Pathology review
Pericardial disease: Pathology review
Peripheral artery disease: Pathology review
Shock: Pathology review
Supraventricular arrhythmias: Pathology review
Valvular heart disease: Pathology review
Vasculitis: Pathology review
Ventricular arrhythmias: Pathology review
Cardiomyopathies: Pathology review
0 / 3 complete
of complete
Aman is a 60 year old male who came into the clinic with shortness of breath and lower limb edema for the past 3 months. He has a history of hypertension, hyperlipidemia and chronic alcohol use. On auscultation, an additional S3 sound is heard. An echocardiogram is performed, which shows dilated ventricular chambers and a reduced ejection fraction. Alexandra is a 23 year old professional volleyball player who came to the clinic after multiple episodes of “passing out” during her games. At first, she presumed it was due to dehydration, but she is now concerned. She has a family history of sudden cardiac death in multiple relatives. An echocardiogram shows asymmetric hypertrophy of the interventricular septum, and a normal ejection fraction.
Both Aman and Alexandra have cardiomyopathies. From outside to inside, the heart is made of the epicardium, myocardium, and endocardium. Diseases that affect the myocardium are called cardiomyopathies. The three main subtypes are dilated, hypertrophic and restrictive cardiomyopathy.
Let’s start with dilated cardiomyopathy, which is the most common one, accounting for almost 90% of all cases. Now, In dilated cardiomyopathy the ventricular walls become thin and weak. As a consequence, the ventricular chambers dilate. Because the ventricular wall is thinner, muscle contraction is weaker and the heart can’t pump blood efficiently throughout the body. So we have a systolic dysfunction with normal diastole.
Okay, when it comes to the etiology of dilated cardiomyopathy, the large majority of cases are idiopathic, meaning the cause can’t be identified. However, there are many secondary causes that must be excluded first. Examples include toxins like chronic alcohol or cocaine abuse, nutritional deficiencies like thiamine deficiency, also called beri-beri, or selenium deficiency. Another cause is myocarditis, which is inflammation of the heart muscle, usually caused by viruses like Coxsackie B, but can also be related to autoimmune diseases like lupus. Hemochromatosis is a disorder of iron overload in which excessive iron can be deposited in many organ sites, including the cardiac muscle. Too much intracellular iron can act as a toxic free radical, resulting in cellular damage.
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.