Cardiovascular changes during hemorrhage

2,304views

Videos

Notes

Cardiovascular changes during hemorrhage

Physiology

Anatomy and physiology

Cardiovascular system anatomy and physiology

Lymphatic system anatomy and physiology

Coronary circulation

Hemodynamics

Blood pressure, blood flow, and resistance

Pressures in the cardiovascular system

Laminar flow and Reynolds number

Resistance to blood flow

Compliance of blood vessels

Control of blood flow circulation

Microcirculation and Starling forces

Cardiac output

Measuring cardiac output (Fick principle)

Stroke volume, ejection fraction, and cardiac output

Cardiac contractility

Frank-Starling relationship

Cardiac preload

Cardiac afterload

Law of Laplace

Cardiac and vascular function curves

Altering cardiac and vascular function curves

Cardiac cycle and pressure-volume loops

Cardiac work

Cardiac cycle

Pressure-volume loops

Changes in pressure-volume loops

Cardiovascular physiological responses

Physiological changes during exercise

Cardiovascular changes during hemorrhage

Cardiovascular changes during postural change

Auscultation of the heart

Normal heart sounds

Abnormal heart sounds

Myocyte electrophysiology

Action potentials in myocytes

Action potentials in pacemaker cells

Excitability and refractory periods

Cardiac excitation-contraction coupling

Electrocardiography

Electrical conduction in the heart

Cardiac conduction velocity

ECG basics

ECG normal sinus rhythm

ECG intervals

ECG QRS transition

ECG axis

ECG rate and rhythm

ECG cardiac infarction and ischemia

ECG cardiac hypertrophy and enlargement

Blood pressure regulation

Baroreceptors

Chemoreceptors

Renin-angiotensin-aldosterone system

Assessments

Cardiovascular changes during hemorrhage

Flashcards

0 / 21 complete

High Yield Notes

6 pages

Flashcards

Cardiovascular changes during hemorrhage

of complete

External Links

Summary

The sudden loss of blood that occurs during hemorrhage causes the cardiovascular system to change in several ways. The perfusion to various organs becomes compromised, leading to different compensatory mechanisms by the body to restore appropriate perfusion. The most immediate change is that the heart rate will increase as the body tries to get more blood to the vital organs. The blood pressure will also decrease, leading to hypoperfusion of the tissues, which means that insufficient oxygen and nutrients are getting delivered to the cells. Hemorrhage can cause organ damage and even death due to hypovolemic shock.

Elsevier

Copyright © 2023 Elsevier, except certain content provided by third parties

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX