Cell membrane
32,471views
00:00 / 00:00
Flashcards
Cell membrane
0 of 6 complete
External References
First Aid
2024
2023
2022
2021
B cells p. 409
cell surface proteins p. 108
CDNaN protein
cell surface protein p. 108
Cell membrane
apoptosis and p. 204
Cell surface proteins
association and functions p. 108
leukocyte adhesion deficiency p. 115
T cells and p. 99
Cytoplasmic membrane (bacterial) p. 121
Cytotoxic T cells p. 100
cell surface proteins p. 108
Helper T cells
cell surface proteins p. 108
Immune responses p. 102-115
cell surface proteins p. 108
Macrophages p. 413
cell surface proteins p. 108
Natural killer (NK) cells p. 99
cell surface proteins p. 108
Plasma membrane
cell trafficking p. 45
sodium-potassium pump p. 47
Regulatory T cells p. 100
cell surface proteins p. 108
T cells p. 409
cell surface proteins p. 108
Transcript
Content Reviewers
Contributors
The cell membrane is an important structural element of the building block of life - the cell.
Its main role is to define what’s inside - the intracellular space - and what’s outside - the extracellular space.
It also regulates what comes in or out of the cell - that’s called selective permeability.
The cell membrane is basically made up of a bilayer of phospholipid molecules.
Phospholipids are amphiphilic molecules, meaning “both-loving”.
Now, the phospholipid is made out of three things - their head, which is made out of negatively charged phosphate, a tail - made out of two fatty acids, and a skeleton made out of glycerol, that brings everything together.
Their “head” is hydrophilic - meaning it likes water. Meanwhile, their “tail” is lipophilic - meaning, it loves fats.
These lipophilic parts also exclude water - so they’re not just lipophilic, they’re also hydrophobic.
In water, phospholipids form a bilayer - where the hydrophobic tails are oriented inwards, where there are no water molecules, and the hydrophilic heads oriented outwards, in contact with water molecules.
So the plasma membrane forms a wall with water on both sides.
The cell membrane is also semipermeable.
That means that the membrane allows some molecules to pass through, but not others - and it’s mostly based on the molecule’s size, polarity, and charge.
There are roughly five categories. Small and nonpolar molecules, like oxygen or carbon dioxide will diffuse through the membrane quickly.
Small, polar molecules, like water, will be able to pass through, but it happens relatively slowly.
That’s because even though the middle of the phospholipid bilayer is hydrophobic, the occasional molecule of water can sort of slip through because it’s such a small molecule.
Now, large and nonpolar molecules, such as retinol - also known as Vitamin A1 - can also cross the cell membrane thanks to them being non-polar - but once again, the crossing is really slow, because the molecule is so large.
Now, as you might guess, large, polar molecules, like glucose, are unlikely to pass the cell membrane on their own.
Highly polar, charged ions like Na+, K+, Cl-, or molecules that possess a charge, like amino acids stand no chance at passing the cell membrane
In addition to phospholipid bilayers, membranes also contain cholesterol.
Without cholesterol, at low temperatures, the phospholipids pack tightly together and become less fluid, and that makes the membrane brittle.
Without cholesterol, at high temperatures, the phospholipids separate from one another and that makes the membrane leaky and weak.
Summary
The cell membrane is an essential cellular structure consisting of a lipid bilayer with embedded proteins. The lipid bilayer is a double layer of phospholipids containing hydrophilic (water-loving) head groups and hydrophobic (water-hating) tails. The head groups interact with water, while the tails interact with each other to form the bilayer. The proteins in the membrane are embedded in the lipid bilayer and play various roles in cell function, including signal transduction, cell adhesion, and transport. The cell membrane regulates what comes in or out of the cell, known as selective permeability.