Cell wall synthesis inhibitors: Penicillins

00:00 / 00:00

Videos

Notes

Cell wall synthesis inhibitors: Penicillins

Prerequisite basic sciences

Prerequisite basic sciences

Attributable risk (AR)

Bias in interpreting results of clinical studies

Bias in performing clinical studies

Clinical trials

Confounding

DALY and QALY

Direct standardization

Disease causality

Incidence and prevalence

Indirect standardization

Interaction

Mortality rates and case-fatality

Odds ratio

Positive and negative predictive value

Prevention

Relative and absolute risk

Selection bias

Sensitivity and specificity

Study designs

Test precision and accuracy

Acyanotic congenital heart defects: Pathology review

Adrenal masses: Pathology review

Bacterial and viral skin infections: Pathology review

Bone tumors: Pathology review

Coagulation disorders: Pathology review

Congenital neurological disorders: Pathology review

Cyanotic congenital heart defects: Pathology review

Extrinsic hemolytic normocytic anemia: Pathology review

Eye conditions: Inflammation, infections and trauma: Pathology review

Eye conditions: Refractive errors, lens disorders and glaucoma: Pathology review

Headaches: Pathology review

Intrinsic hemolytic normocytic anemia: Pathology review

Leukemias: Pathology review

Lymphomas: Pathology review

Macrocytic anemia: Pathology review

Microcytic anemia: Pathology review

Mixed platelet and coagulation disorders: Pathology review

Nasal, oral and pharyngeal diseases: Pathology review

Nephritic syndromes: Pathology review

Nephrotic syndromes: Pathology review

Non-hemolytic normocytic anemia: Pathology review

Pediatric brain tumors: Pathology review

Pediatric musculoskeletal disorders: Pathology review

Platelet disorders: Pathology review

Renal and urinary tract masses: Pathology review

Seizures: Pathology review

Viral exanthems of childhood: Pathology review

Pharmacodynamics: Agonist, partial agonist and antagonist

Pharmacodynamics: Desensitization and tolerance

Pharmacodynamics: Drug-receptor interactions

Pharmacokinetics: Drug absorption and distribution

Pharmacokinetics: Drug elimination and clearance

Pharmacokinetics: Drug metabolism

Prerequisite basic sciences

Growth hormone and somatostatin

Prerequisite basic sciences

Breastfeeding

Prerequisite basic sciences

Androgens and antiandrogens

Estrogens and antiestrogens

Miscellaneous cell wall synthesis inhibitors

Protein synthesis inhibitors: Tetracyclines

Cell wall synthesis inhibitors: Penicillins

Antihistamines for allergies

Acetaminophen (Paracetamol)

Non-steroidal anti-inflammatory drugs

Antimetabolites: Sulfonamides and trimethoprim

Antituberculosis medications

Cell wall synthesis inhibitors: Cephalosporins

Cell wall synthesis inhibitors: Penicillins

DNA synthesis inhibitors: Fluoroquinolones

DNA synthesis inhibitors: Metronidazole

Miscellaneous cell wall synthesis inhibitors

Miscellaneous protein synthesis inhibitors

Protein synthesis inhibitors: Aminoglycosides

Protein synthesis inhibitors: Tetracyclines

Bronchodilators: Beta 2-agonists and muscarinic antagonists

Bronchodilators: Leukotriene antagonists and methylxanthines

Pulmonary corticosteroids and mast cell inhibitors

Glucocorticoids

Bronchodilators: Beta 2-agonists and muscarinic antagonists

Bronchodilators: Leukotriene antagonists and methylxanthines

Azoles

Glucocorticoids

Pulmonary corticosteroids and mast cell inhibitors

Acetaminophen (Paracetamol)

Non-steroidal anti-inflammatory drugs

Antimetabolites: Sulfonamides and trimethoprim

Cell wall synthesis inhibitors: Cephalosporins

Cell wall synthesis inhibitors: Penicillins

Miscellaneous protein synthesis inhibitors

Protein synthesis inhibitors: Tetracyclines

Pharmacodynamics: Agonist, partial agonist and antagonist

Pharmacodynamics: Desensitization and tolerance

Pharmacodynamics: Drug-receptor interactions

Pharmacokinetics: Drug absorption and distribution

Pharmacokinetics: Drug elimination and clearance

Pharmacokinetics: Drug metabolism

Cell wall synthesis inhibitors: Cephalosporins

Glucocorticoids

Miscellaneous protein synthesis inhibitors

Anticonvulsants and anxiolytics: Barbiturates

Anticonvulsants and anxiolytics: Benzodiazepines

Nonbenzodiazepine anticonvulsants

Cell wall synthesis inhibitors: Cephalosporins

Cell wall synthesis inhibitors: Penicillins

Miscellaneous cell wall synthesis inhibitors

Assessments

Cell wall synthesis inhibitors: Penicillins

Flashcards

0 / 53 complete

Flashcards

Cell wall synthesis inhibitors: Penicillins

of complete

External References

First Aid

2022

2021

2020

2019

2018

2017

2016

Amoxicillin

clinical use p. 185

Haemophilus influenzae p. , 140

Helicobacter pylori p. , 144

Lyme disease p. 144

mechanism (diagram) p. 184

prophylaxis p. 195

Transcript

Penicillins are antibiotics that got their name from the Penicillium mold, from which they were originally extracted.

They belong to the pharmacological group of beta-lactam antibiotics.

What all beta-lactams have in common is a beta-lactam ring in their structure, which gives them their name, and also the mechanism of action - the inhibition of cell wall synthesis in bacteria.

So, our body consists of multiple eukaryotic cells, while bacterias are prokaryotic, meaning they are primitive, single cellular organisms.

Most have a slimy capsule made out of polysaccharides and a cell wall which encapsulates and protects the bacteria like a suit of armor and offers structural support.

Bacterial cell walls are made of a substance called peptidoglycan, or murein.

Peptidoglycan is a molecule composed out of long strands of amino polysaccharides running in parallel.

These are made of segments of N-acetylglucosamine, or NAG, and N-acetylmuramic acid, or NAM, in an alternating pattern - so, NAG, NAM, NAG, NAM, and so on, like a pearl necklace.

At the tips of the NAM subunits are tetrapeptide and pentapeptide chains, protruding from NAM subunits.

These peptide chains can link to other peptide chains from the neighboring strands through a process known as transpeptidation.

This is carried out by an enzyme called DD-transpeptidases, or penicillin binding proteins, or PBPs.

Now these enzymes are like locks and there are specific binding area for the pentapeptides keys to fit into.

Once the key goes in the lock, the PBP enzymes fuse them together, creating a stable link between the two amino polysaccharide strands and strengthen the cell wall.

In essence, all beta lactam antibiotics, like the penicillins, somewhat resemble the tetrapeptide chains.

Inside the bacteria, PBP enzymes will mistakenly bind to the beta lactams antibiotic molecule instead of a tetrapeptide and stick inside the PBP forever, like chewing gum in a keyhole, permanently disabling it.

As more and more of PBPs gets disabled, the crosslinking fails to occur, and the wall becomes weak and unstable.

If the affected bacteria attempts to divide, their cell wall will collapse, killing them in the process!

Now, some bacteria have developed resistance to beta lactam antibiotics.

The most notable is the notorious staphylococcus aureus, which evolved an enzyme called beta lactamases or penicillinases that breaks down the beta lactam ring within the antibiotic, rendering it ineffective.

In response, we started adding beta lactamase inhibitors, such as clavulanic acid, that would bind to beta lactamases and inactivate them, like the gum into the keyhole.

Sources

  1. "Katzung & Trevor's Pharmacology Examination and Board Review,12th Edition" McGraw-Hill Education / Medical (2018)
  2. "Rang and Dale's Pharmacology" Elsevier (2019)
  3. "Goodman and Gilman's The Pharmacological Basis of Therapeutics, 13th Edition" McGraw-Hill Education / Medical (2017)
  4. "Methicillin-resistant Staphylococcus aureus: A consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management" The American Journal of Medicine (1993)
  5. "Management of allergy to penicillins and other beta-lactams" Clinical & Experimental Allergy (2015)
  6. "Penicillins" Drugs (1993)
  7. "Antibiotic Resistance in Streptococcus pneumoniae" Clinical Infectious Diseases (1997)
Elsevier

Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX