Cholinomimetics: Indirect agonists (anticholinesterases)

19,148views

00:00 / 00:00

Videos

Notes

Cholinomimetics: Indirect agonists (anticholinesterases)

Medical and surgical emergencies

Cardiology, cardiac surgery and vascular surgery

Advanced cardiac life support (ACLS): Clinical (To be retired)

Supraventricular arrhythmias: Pathology review

Ventricular arrhythmias: Pathology review

Heart blocks: Pathology review

Coronary artery disease: Clinical (To be retired)

Heart failure: Clinical (To be retired)

Syncope: Clinical (To be retired)

Pericardial disease: Clinical (To be retired)

Valvular heart disease: Clinical (To be retired)

Chest trauma: Clinical (To be retired)

Shock: Clinical (To be retired)

Peripheral vascular disease: Clinical (To be retired)

Leg ulcers: Clinical (To be retired)

Aortic aneurysms and dissections: Clinical (To be retired)

Cholinomimetics: Direct agonists

Cholinomimetics: Indirect agonists (anticholinesterases)

Muscarinic antagonists

Sympathomimetics: Direct agonists

Sympatholytics: Alpha-2 agonists

Adrenergic antagonists: Presynaptic

Adrenergic antagonists: Alpha blockers

Adrenergic antagonists: Beta blockers

ACE inhibitors, ARBs and direct renin inhibitors

Loop diuretics

Thiazide and thiazide-like diuretics

Calcium channel blockers

cGMP mediated smooth muscle vasodilators

Class I antiarrhythmics: Sodium channel blockers

Class II antiarrhythmics: Beta blockers

Class III antiarrhythmics: Potassium channel blockers

Class IV antiarrhythmics: Calcium channel blockers and others

Positive inotropic medications

Antiplatelet medications

Dermatology and plastic surgery

Blistering skin disorders: Clinical (To be retired)

Bites and stings: Clinical (To be retired)

Burns: Clinical (To be retired)

Endocrinology and ENT (Otolaryngology)

Diabetes mellitus: Clinical (To be retired)

Hyperthyroidism: Clinical (To be retired)

Hypothyroidism and thyroiditis: Clinical (To be retired)

Parathyroid conditions and calcium imbalance: Clinical (To be retired)

Adrenal insufficiency: Clinical (To be retired)

Neck trauma: Clinical (To be retired)

Insulins

Mineralocorticoids and mineralocorticoid antagonists

Glucocorticoids

Gastroenterology and general surgery

Abdominal pain: Clinical (To be retired)

Appendicitis: Clinical (To be retired)

Gastrointestinal bleeding: Clinical (To be retired)

Peptic ulcers and stomach cancer: Clinical (To be retired)

Inflammatory bowel disease: Clinical (To be retired)

Diverticular disease: Clinical (To be retired)

Gallbladder disorders: Clinical (To be retired)

Pancreatitis: Clinical (To be retired)

Cirrhosis: Clinical (To be retired)

Hernias: Clinical (To be retired)

Bowel obstruction: Clinical (To be retired)

Abdominal trauma: Clinical (To be retired)

Laxatives and cathartics

Antidiarrheals

Acid reducing medications

Hematology and oncology

Blood products and transfusion: Clinical (To be retired)

Venous thromboembolism: Clinical (To be retired)

Anticoagulants: Heparin

Anticoagulants: Warfarin

Anticoagulants: Direct factor inhibitors

Antiplatelet medications

Thrombolytics

Infectious diseases

Fever of unknown origin: Clinical (To be retired)

Infective endocarditis: Clinical (To be retired)

Pneumonia: Clinical (To be retired)

Tuberculosis: Pathology review

Diarrhea: Clinical (To be retired)

Urinary tract infections: Clinical (To be retired)

Meningitis, encephalitis and brain abscesses: Clinical (To be retired)

Bites and stings: Clinical (To be retired)

Skin and soft tissue infections: Clinical (To be retired)

Protein synthesis inhibitors: Aminoglycosides

Antimetabolites: Sulfonamides and trimethoprim

Antituberculosis medications

Miscellaneous cell wall synthesis inhibitors

Protein synthesis inhibitors: Tetracyclines

Cell wall synthesis inhibitors: Penicillins

Miscellaneous protein synthesis inhibitors

Cell wall synthesis inhibitors: Cephalosporins

DNA synthesis inhibitors: Metronidazole

DNA synthesis inhibitors: Fluoroquinolones

Herpesvirus medications

Azoles

Echinocandins

Miscellaneous antifungal medications

Anthelmintic medications

Antimalarials

Anti-mite and louse medications

Nephrology and urology

Hypernatremia: Clinical (To be retired)

Hyponatremia: Clinical (To be retired)

Hyperkalemia: Clinical (To be retired)

Hypokalemia: Clinical (To be retired)

Metabolic and respiratory acidosis: Clinical (To be retired)

Metabolic and respiratory alkalosis: Clinical (To be retired)

Toxidromes: Clinical (To be retired)

Medication overdoses and toxicities: Pathology review

Environmental and chemical toxicities: Pathology review

Acute kidney injury: Clinical (To be retired)

Kidney stones: Clinical (To be retired)

Adrenergic antagonists: Alpha blockers

Neurology and neurosurgery

Stroke: Clinical (To be retired)

Seizures: Clinical (To be retired)

Headaches: Clinical (To be retired)

Traumatic brain injury: Clinical (To be retired)

Neck trauma: Clinical (To be retired)

Lower back pain: Clinical (To be retired)

Spinal cord disorders: Pathology review

Anticonvulsants and anxiolytics: Barbiturates

Anticonvulsants and anxiolytics: Benzodiazepines

Nonbenzodiazepine anticonvulsants

Migraine medications

Osmotic diuretics

Antiplatelet medications

Thrombolytics

Opioid agonists, mixed agonist-antagonists and partial agonists

Opioid antagonists

Pulmonology and thoracic surgery

Asthma: Clinical (To be retired)

Chronic obstructive pulmonary disease (COPD): Clinical (To be retired)

Venous thromboembolism: Clinical (To be retired)

Acute respiratory distress syndrome: Clinical (To be retired)

Pleural effusion: Clinical (To be retired)

Pneumothorax: Clinical (To be retired)

Chest trauma: Clinical (To be retired)

Bronchodilators: Beta 2-agonists and muscarinic antagonists

Pulmonary corticosteroids and mast cell inhibitors

Rheumatology and orthopedic surgery

Joint pain: Clinical (To be retired)

Anatomy clinical correlates: Clavicle and shoulder

Anatomy clinical correlates: Axilla

Anatomy clinical correlates: Arm, elbow and forearm

Anatomy clinical correlates: Wrist and hand

Anatomy clinical correlates: Median, ulnar and radial nerves

Anatomy clinical correlates: Bones, joints and muscles of the back

Anatomy clinical correlates: Hip, gluteal region and thigh

Anatomy clinical correlates: Knee

Anatomy clinical correlates: Leg and ankle

Anatomy clinical correlates: Foot

Acetaminophen (Paracetamol)

Non-steroidal anti-inflammatory drugs

Glucocorticoids

Opioid agonists, mixed agonist-antagonists and partial agonists

Antigout medications

Assessments

Cholinomimetics: Indirect agonists (anticholinesterases)

Flashcards

0 / 20 complete

Flashcards

Cholinomimetics: Indirect agonists (anticholinesterases)

of complete

External References

First Aid

2022

2021

2020

2019

2018

2017

2016

Acetylcholine (ACh)

anticholinesterase effect on p. 241

Acetylcholinesterase (AChE)

cholinesterase inhibitor poisoning p. 241

Anticholinesterase drugs p. 241

Atropine p. 242

cholinesterase inhibitor poisoning p. 241

Bradycardia

cholinesterase inhibitor poisoning p. 241

Cholinesterase inhibitors

diarrhea with p. 250

poisoning from p. 241

Diarrhea

cholinesterase inhibitor poisoning p. 241

Miosis

cholinesterase inhibitor poisoning p. 241

Physostigmine

anticholinesterase p. 241

Transcript

Content Reviewers

Yifan Xiao, MD

Contributors

Ursula Florjanczyk, MScBMC

Sam Gillespie, BSc

Justin Ling, MD, MS

Evan Debevec-McKenney

The nervous system is divided into the central nervous system, that is the brain and spinal cord, and the peripheral nervous system, which includes all the nerves that connect the central nervous system to the muscles and organs.

The peripheral nervous system can be divided into the somatic nervous system, which controls voluntary movement of our skeletal muscles; and the autonomic nervous system, which controls the involuntary activity of the smooth muscles and glands of our organs, and is further divided into the sympathetic and parasympathetic nervous systems.

Parasympathetic neurons in the central nervous system project preganglionic fibers towards parasympathetic ganglia, which are collections of neurons near the organ they are supposed to affect.

From there, postganglionic fibers project towards the target cell.

Both the preganglionic and postganglionic neurons release the neurotransmitter acetylcholine.

Acetylcholine released from preganglionic fibers acts on nicotinic receptors on the postganglionic neurons.

And acetylcholine released from postganglionic neurons acts on muscarinic and nicotinic receptors on target organs.

Nicotinic receptors are coupled to ion channels that let sodium in and potassium out, causing depolarization.

Muscarinic receptors are G-protein coupled receptors, which means they trigger secondary messenger proteins that activating a cascade of enzymes inside the cell.

The physiologic effects of the muscarinic and nicotinic stimulation can be remembered with the mnemonic: DUMB HAVES, so defecation; urination; muscle excitation; bronchospasm; heart bradycardia; autonomic ganglia stimulation; vasodilation; eye miosis, which is constriction of the pupil, and eye accommodation, which is contraction of the ciliary muscles of the iris to facilitate looking at near objects; and secretions from the lacrimal, salivary, and sweat glands, as well as the glands in the GI tract.

Sources

  1. "Katzung & Trevor's Pharmacology Examination and Board Review,12th Edition" McGraw-Hill Education / Medical (2018)
  2. "Rang and Dale's Pharmacology" Elsevier (2019)
  3. "Goodman and Gilman's The Pharmacological Basis of Therapeutics, 13th Edition" McGraw-Hill Education / Medical (2017)
  4. "The nature of the reaction of organophosphorus compounds and carbamates with esterases" Bull World Health Organ (1971)
  5. "Diagnosis of Myasthenia Gravis" Neurologic Clinics (2018)
  6. "A systematic review of the effects of adding neostigmine to local anesthetics for neuraxial administration in obstetric anesthesia and analgesia" International Journal of Obstetric Anesthesia (2015)
  7. "Role of Donepezil in the Management of Neuropsychiatric Symptoms in Alzheimer's Disease and Dementia with Lewy Bodies" CNS Neuroscience & Therapeutics (2016)
  8. "Donepezil across the spectrum of Alzheimer's disease: dose optimization and clinical relevance" Acta Neurologica Scandinavica (2015)
Elsevier

Copyright © 2023 Elsevier, except certain content provided by third parties

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX