Class I antiarrhythmics: Sodium channel blockers

68,033views

test

00:00 / 00:00

Class I antiarrhythmics: Sodium channel blockers

before placement

before placement

Acyanotic congenital heart defects: Pathology review
Cyanotic congenital heart defects: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Coronary artery disease: Pathology review
Peripheral artery disease: Pathology review
Valvular heart disease: Pathology review
Cardiomyopathies: Pathology review
Heart failure: Pathology review
Supraventricular arrhythmias: Pathology review
Ventricular arrhythmias: Pathology review
Heart blocks: Pathology review
Aortic dissections and aneurysms: Pathology review
Pericardial disease: Pathology review
Endocarditis: Pathology review
Hypertension: Pathology review
Shock: Pathology review
Vasculitis: Pathology review
Cardiac and vascular tumors: Pathology review
Dyslipidemias: Pathology review
Adrenal insufficiency: Pathology review
Adrenal masses: Pathology review
Hyperthyroidism: Pathology review
Hypothyroidism: Pathology review
Thyroid nodules and thyroid cancer: Pathology review
Parathyroid disorders and calcium imbalance: Pathology review
Diabetes mellitus: Pathology review
Cushing syndrome and Cushing disease: Pathology review
Pituitary tumors: Pathology review
Hypopituitarism: Pathology review
Diabetes insipidus and SIADH: Pathology review
Multiple endocrine neoplasia: Pathology review
Congenital gastrointestinal disorders: Pathology review
Esophageal disorders: Pathology review
GERD, peptic ulcers, gastritis, and stomach cancer: Pathology review
Inflammatory bowel disease: Pathology review
Malabsorption syndromes: Pathology review
Diverticular disease: Pathology review
Appendicitis: Pathology review
Gastrointestinal bleeding: Pathology review
Colorectal polyps and cancer: Pathology review
Pancreatitis: Pathology review
Gallbladder disorders: Pathology review
Jaundice: Pathology review
Viral hepatitis: Pathology review
Cirrhosis: Pathology review
Microcytic anemia: Pathology review
Non-hemolytic normocytic anemia: Pathology review
Intrinsic hemolytic normocytic anemia: Pathology review
Extrinsic hemolytic normocytic anemia: Pathology review
Macrocytic anemia: Pathology review
Heme synthesis disorders: Pathology review
Coagulation disorders: Pathology review
Platelet disorders: Pathology review
Mixed platelet and coagulation disorders: Pathology review
Thrombosis syndromes (hypercoagulability): Pathology review
Lymphomas: Pathology review
Leukemias: Pathology review
Plasma cell disorders: Pathology review
Myeloproliferative disorders: Pathology review
Immunodeficiencies: T-cell and B-cell disorders: Pathology review
Immunodeficiencies: Combined T-cell and B-cell disorders: Pathology review
Immunodeficiencies: Phagocyte and complement dysfunction: Pathology review
Pigmentation skin disorders: Pathology review
Acneiform skin disorders: Pathology review
Papulosquamous and inflammatory skin disorders: Pathology review
Vesiculobullous and desquamating skin disorders: Pathology review
Skin cancer: Pathology review
Back pain: Pathology review
Rheumatoid arthritis and osteoarthritis: Pathology review
Seronegative and septic arthritis: Pathology review
Gout and pseudogout: Pathology review
Systemic lupus erythematosus (SLE): Pathology review
Scleroderma: Pathology review
Sjogren syndrome: Pathology review
Bone disorders: Pathology review
Bone tumors: Pathology review
Myalgias and myositis: Pathology review
Neuromuscular junction disorders: Pathology review
Muscular dystrophies and mitochondrial myopathies: Pathology review
Congenital neurological disorders: Pathology review
Headaches: Pathology review
Seizures: Pathology review
Cerebral vascular disease: Pathology review
Traumatic brain injury: Pathology review
Spinal cord disorders: Pathology review
Dementia: Pathology review
Central nervous system infections: Pathology review
Movement disorders: Pathology review
Demyelinating disorders: Pathology review
Adult brain tumors: Pathology review
Pediatric brain tumors: Pathology review
Neurocutaneous disorders: Pathology review
Congenital renal disorders: Pathology review
Renal tubular defects: Pathology review
Renal tubular acidosis: Pathology review
Acid-base disturbances: Pathology review
Electrolyte disturbances: Pathology review
Renal failure: Pathology review
Nephrotic syndromes: Pathology review
Nephritic syndromes: Pathology review
Urinary incontinence: Pathology review
Urinary tract infections: Pathology review
Kidney stones: Pathology review
Renal and urinary tract masses: Pathology review
Disorders of sex chromosomes: Pathology review
Prostate disorders and cancer: Pathology review
Testicular tumors: Pathology review
Uterine disorders: Pathology review
Ovarian cysts and tumors: Pathology review
Cervical cancer: Pathology review
Vaginal and vulvar disorders: Pathology review
Benign breast conditions: Pathology review
Breast cancer: Pathology review
Complications during pregnancy: Pathology review
Congenital TORCH infections: Pathology review
Choanal atresia
Laryngomalacia
Allergic rhinitis
Nasal polyps
Upper respiratory tract infection
Sinusitis
Laryngitis
Retropharyngeal and peritonsillar abscesses
Bacterial epiglottitis
Nasopharyngeal carcinoma
Respiratory distress syndrome: Pathology review
Cystic fibrosis: Pathology review
Pneumonia: Pathology review
Tuberculosis: Pathology review
Deep vein thrombosis and pulmonary embolism: Pathology review
Pleural effusion, pneumothorax, hemothorax and atelectasis: Pathology review
Obstructive lung diseases: Pathology review
Restrictive lung diseases: Pathology review
Apnea, hypoventilation and pulmonary hypertension: Pathology review
Lung cancer and mesothelioma: Pathology review
Coronary artery disease: Clinical
Heart failure: Clinical
Syncope: Clinical
Pericardial disease: Clinical
Valvular heart disease: Clinical
Infective endocarditis: Clinical
Cardiomyopathies: Clinical
Hypertension: Clinical
Hypercholesterolemia: Clinical
Diabetes mellitus: Clinical
Hyperthyroidism: Clinical
Parathyroid conditions and calcium imbalance: Clinical
Hypothyroidism and thyroiditis: Clinical
Thyroid nodules and thyroid cancer: Clinical
Pituitary adenomas and pituitary hyperfunction: Clinical
Hypopituitarism: Clinical
Cushing syndrome: Clinical
Adrenal insufficiency: Clinical
Adrenal masses and tumors: Clinical
MEN syndromes: Clinical
Esophageal disorders: Clinical
Esophagitis: Clinical
Gastroesophageal reflux disease (GERD): Clinical
Peptic ulcers and stomach cancer: Clinical
Gastroparesis: Clinical
Diarrhea: Clinical
Malabsorption: Clinical
Inflammatory bowel disease: Clinical
Colorectal cancer: Clinical
Diverticular disease: Clinical
Anal conditions: Clinical
Gastrointestinal bleeding: Clinical
Gallbladder disorders: Clinical
Pancreatitis: Clinical
Jaundice: Clinical
Viral hepatitis: Clinical
Cirrhosis: Clinical
Immunodeficiencies: Clinical
Fever of unknown origin: Clinical
Fat-soluble vitamin deficiency and toxicity: Pathology review
Water-soluble vitamin deficiency and toxicity: B1-B7: Pathology review
Zinc deficiency and protein-energy malnutrition: Pathology review
Anemia: Clinical
Leukemia: Clinical
Thrombocytopenia: Clinical
Lymphoma: Clinical
Bleeding disorders: Clinical
Myeloproliferative neoplasms: Clinical
Thrombophilia: Clinical
Plasma cell disorders: Clinical
Blood products and transfusion: Clinical
Pneumonia: Clinical
Urinary tract infections: Clinical
Meningitis, encephalitis and brain abscesses: Clinical
Bites and stings: Clinical
Hypernatremia: Clinical
Hyponatremia: Clinical
Hyperkalemia: Clinical
Hypokalemia: Clinical
Metabolic and respiratory acidosis: Clinical
Metabolic and respiratory alkalosis: Clinical
Toxidromes: Clinical
Medication overdoses and toxicities: Pathology review
Environmental and chemical toxicities: Pathology review
Acute kidney injury: Clinical
Chronic kidney disease: Clinical
Nephritic and nephrotic syndromes: Clinical
Asthma: Clinical
Chronic obstructive pulmonary disease (COPD): Clinical
Cystic fibrosis: Clinical
Diffuse parenchymal lung disease: Clinical
Venous thromboembolism: Clinical
Acute respiratory distress syndrome: Clinical
Pleural effusion: Clinical
Pneumothorax: Clinical
Lung cancer: Clinical
Joint pain: Clinical
Rheumatoid arthritis: Clinical
Seronegative arthritis: Clinical
Systemic lupus erythematosus (SLE): Clinical
Sjogren syndrome: Clinical
Inflammatory myopathies: Clinical
Vasculitis: Clinical
Antihistamines for allergies
Glucocorticoids
Sympatholytics: Alpha-2 agonists
Adrenergic antagonists: Presynaptic
Adrenergic antagonists: Alpha blockers
Adrenergic antagonists: Beta blockers
ACE inhibitors, ARBs and direct renin inhibitors
Thiazide and thiazide-like diuretics
Calcium channel blockers
cGMP mediated smooth muscle vasodilators
Class I antiarrhythmics: Sodium channel blockers
Class II antiarrhythmics: Beta blockers
Class III antiarrhythmics: Potassium channel blockers
Class IV antiarrhythmics: Calcium channel blockers and others
Lipid-lowering medications: Statins
Lipid-lowering medications: Fibrates
Miscellaneous lipid-lowering medications
Positive inotropic medications
Loop diuretics
Antiplatelet medications
Hyperthyroidism medications
Hypothyroidism medications
Insulins
Hypoglycemics: Insulin secretagogues
Miscellaneous hypoglycemics
Adrenal hormone synthesis inhibitors
Mineralocorticoids and mineralocorticoid antagonists
Laxatives and cathartics
Antidiarrheals
Acid reducing medications
Anticoagulants: Heparin
Anticoagulants: Warfarin
Anticoagulants: Direct factor inhibitors
Thrombolytics
Hematopoietic medications
Ribonucleotide reductase inhibitors
Topoisomerase inhibitors
Platinum containing medications
Anti-tumor antibiotics
Microtubule inhibitors
DNA alkylating medications
Monoclonal antibodies
Antimetabolites for cancer treatment
Protein synthesis inhibitors: Aminoglycosides
Antimetabolites: Sulfonamides and trimethoprim
Antituberculosis medications
Miscellaneous cell wall synthesis inhibitors
Protein synthesis inhibitors: Tetracyclines
Cell wall synthesis inhibitors: Penicillins
Miscellaneous protein synthesis inhibitors
Cell wall synthesis inhibitors: Cephalosporins
DNA synthesis inhibitors: Metronidazole
DNA synthesis inhibitors: Fluoroquinolones
Integrase and entry inhibitors
Nucleoside reverse transcriptase inhibitors (NRTIs)
Protease inhibitors
Hepatitis medications
Non-nucleoside reverse transcriptase inhibitors (NNRTIs)
Neuraminidase inhibitors
Herpesvirus medications
Azoles
Echinocandins
Miscellaneous antifungal medications
Anthelmintic medications
Antimalarials
Anti-mite and louse medications
Osmotic diuretics
Carbonic anhydrase inhibitors
Potassium sparing diuretics
Bronchodilators: Beta 2-agonists and muscarinic antagonists
Bronchodilators: Leukotriene antagonists and methylxanthines
Acetaminophen (Paracetamol)
Non-steroidal anti-inflammatory drugs
Opioid agonists, mixed agonist-antagonists and partial agonists
Antigout medications
Osteoporosis medications

Assessments

Flashcards

0 / 32 complete

USMLE® Step 1 questions

0 / 6 complete

USMLE® Step 2 questions

0 / 8 complete

Flashcards

Class I antiarrhythmics: Sodium channel blockers

0 of 32 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 6 complete

USMLE® Step 2 style questions USMLE

0 of 8 complete

A 62-year-old man comes to the emergency department following a syncopal episode while at the grocery store. He experienced a sensation of light-headedness and fluttering in his chest before subsequently passing out. The patient states his medical history includes a "heart condition." Brief chart review demonstrates an echocardiogram performed one month ago, which shows a left ventricular ejection fraction of 35%. Temperature is 37.0°C (98.6°F), pulse is 162/min, respirations are 24/min, and blood pressure is 118/82 mmHg. Physical examination demonstrates a hyperdynamic precordium and bibasilar crackles on pulmonary auscultation. Initial ECG shows ventricular tachycardia with left axis deviation. He is subsequently initiated on an antiarrhythmic medication and admitted to the coronary care unit. On the second day of hospitalization, he is noted to have a blood pressure of 86/58 mm Hg and jugular venous distention. Laboratory studies show an elevated brain natriuretic protein level. Which of the following medications is the most likely precipitant of this patient's clinical condition? 

External References

First Aid

2024

2023

2022

2021

Sodium channel blockers p. 326

Transcript

Watch video only

Antiarrhythmic drugs help control arrhythmias or abnormal heartbeats.

There are four main groups of antiarrhythmic medications: class I, sodium-channel blockers; class II, beta-blockers; class III, potassium-channel blockers; class IV, calcium-channel blockers; and miscellaneous antiarrhythmics, or unclassified antiarrhythmics.

We’ll focus on class I antiarrhythmics which are further broken down into 1a, 1b, and 1c. All three groups work on Na+ channels in the cardiac myocytes, so class I medications are also called Na+ channel blockers.

Normally, an electrical signal starts at the sinoatrial or SA node in the right atrium, then propagates throughout both atria, making them contract.

The signal gets delayed a bit as it goes through the atrioventricular or AV node, then goes through the Bundle of His to the Purkinje fibers of both ventricles, making them contract as well.

When a heartbeat doesn’t follow this path, it’s called an arrhythmia, and there are two main causes - abnormal automaticity and abnormal reentry.

Abnormal automaticity is when an area of the heart, say, a part of the ventricle, begins to fire off action potentials at a rate that’s even faster than the SA node.

As a result, this area of the heart essentially flips roles with the SA node, firing so fast that the pacemaker cells in the SA node don’t get a chance to fire. At that point, the heartbeat is being driven by the ventricles.

Alternatively, there can be an abnormal reentry which often results from scar tissue in a ventricle after a heart attack.

Scar tissue doesn’t conduct electricity, so the signal just goes around and around the scar, and each cycle can cause the ventricles to contract.

Alternatively, there might be an accessory, or extra pathway between the atria and the ventricles like the bundle of Kent in Wolff-Parkinson-White syndrome.

Here, the signal might move back up the accessory pathway, since oftentimes it’s bidirectional, meaning the signal can go from atrium to ventricle as well as from ventricle to atrium. This creates a reentry circuit that causes extra contractions that occur in between the signals coming from the SA node.

Now let’s focus on a single action potential in a myocyte - it can be broken into five phases. Here’s a graph of the membrane potential vs. time.

In phase 4, which is the resting phase, the myocyte’s membrane slowly depolarizes.

This is caused by the leakage of some ions - mainly calcium ions - through the gap junctions, which are openings between two neighboring cells, and that makes the membrane depolarize to the threshold potential, which marks the start of phase 0.

Phase 0 is the depolarization phase where voltage gated sodium channels open up when they reach the threshold potential, and they allow sodium to rush into the cell, creating an inward current.

This rapid influx of sodium causes the myocyte’s membrane potential to become more positive.

After the membrane has depolarized, we enter Phase 1, initial repolarization.

At this point the sodium channels close and the voltage-gated potassium channels open up, allowing positive potassium ions to leave the cell.

This is called the outward current and the membrane potential starts to fall, and this creates a little notch on our graph.

Soon, there’s phase 2 or the plateau phase, which is when the voltage-gated calcium channels open up, and that allows positively charged calcium ions into the cell which counterbalances the potassium ions that are flowing out, so the membrane potential remains pretty stable.

During phase 3, or repolarization, the calcium channels close, but the potassium channels remain open, resulting in a net outward positive current.

At the same time, ion pumps start to pump calcium ions back out of the cell and that causes the heart to relax.

Eventually the myocyte returns to the resting membrane potential and we start over with phase 4 again.

Class 1 antiarrhythmic drugs act on Na+ channels and they’re state dependent, meaning that they bind more tightly to cardiac tissue that’s depolarizing a lot.

In other words, they are even more effective when an arrhythmia is severe and are more selective for abnormally over-reactive parts of the heart.

Class 1a antiarrhythmics inhibit the Na+ channels and the K+ channels on atrial and ventricular myocytes and cells of the purkinje fibers.

When Na+ channels are blocked, it decreases the amount of sodium entering the cell so this causes a slower depolarization, which means a decrease in the slope during phase 0.

When the K+ channels are blocked, there’s less K+ leaving the cell and it leads to a slower rate of repolarization and a longer phase 1, 2, and 3, which means a longer effective refractory period.

On the ECG, this shows up as a longer QRS complex and a longer Q-T segment.

So overall, slower depolarization leads to slower conduction of the action potential throughout the heart, which means a slower heart rate!

Now common drugs in class 1a include quinidine, procainamide, and disopyramide.

All three drugs can be used to treat both supraventricular and ventricular arrhythmias, but should be avoided in people with heart failure since they have a negative inotropic effect on the heart and could lead to hypotension.

In addition, procainamide is very effective in treating Wolff-Parkinson-White syndrome.

Since these drugs prolong the QT, they can trigger a type of arrhythmia called torsade de pointes which means “the twisting of points,” because the QRS complexes seem to twist around the isoelectric line.

For other side effects, quinidine can cause cinchonism, which include headaches, tinnitus, and blurry vision.

Sources

  1. "Katzung & Trevor's Pharmacology Examination and Board Review,12th Edition" McGraw-Hill Education / Medical (2018)
  2. "Rang and Dale's Pharmacology" Elsevier (2019)
  3. "Pharmacological Effects of Antiarrhythmic Drugs" Archives of Internal Medicine (1998)
  4. "Pharmacology and Toxicology of Nav1.5-Class 1 Antiarrhythmic Drugs" Cardiac Electrophysiology Clinics (2014)
  5. "Modernized Classification of Cardiac Antiarrhythmic Drugs" Circulation (2018)
  6. "Goodman and Gilman's The Pharmacological Basis of Therapeutics, 13th Edition" McGraw-Hill Education / Medical (2017)