148,321views
00:00 / 00:00
Bacteriology
Bacterial structure and functions
Staphylococcus epidermidis
Staphylococcus aureus
Staphylococcus saprophyticus
Streptococcus viridans
Streptococcus pneumoniae
Streptococcus pyogenes (Group A Strep)
Streptococcus agalactiae (Group B Strep)
Enterococcus
Clostridium perfringens
Clostridium botulinum (Botulism)
Clostridium difficile (Pseudomembranous colitis)
Clostridium tetani (Tetanus)
Bacillus cereus (Food poisoning)
Listeria monocytogenes
Corynebacterium diphtheriae (Diphtheria)
Bacillus anthracis (Anthrax)
Nocardia
Actinomyces israelii
Escherichia coli
Salmonella (non-typhoidal)
Salmonella typhi (typhoid fever)
Pseudomonas aeruginosa
Enterobacter
Klebsiella pneumoniae
Shigella
Proteus mirabilis
Yersinia enterocolitica
Legionella pneumophila (Legionnaires disease and Pontiac fever)
Serratia marcescens
Bacteroides fragilis
Yersinia pestis (Plague)
Vibrio cholerae (Cholera)
Helicobacter pylori
Campylobacter jejuni
Neisseria meningitidis
Neisseria gonorrhoeae
Moraxella catarrhalis
Francisella tularensis (Tularemia)
Bordetella pertussis (Pertussis/Whooping cough)
Brucella
Haemophilus influenzae
Haemophilus ducreyi (Chancroid)
Pasteurella multocida
Mycobacterium tuberculosis (Tuberculosis)
Mycobacterium leprae
Mycobacterium avium complex (NORD)
Mycoplasma pneumoniae
Chlamydia pneumoniae
Chlamydia trachomatis
Borrelia burgdorferi (Lyme disease)
Borrelia species (Relapsing fever)
Leptospira
Treponema pallidum (Syphilis)
Rickettsia rickettsii (Rocky Mountain spotted fever) and other Rickettsia species
Coxiella burnetii (Q fever)
Ehrlichia and Anaplasma
Gardnerella vaginalis (Bacterial vaginosis)
Clostridium botulinum (Botulism)
0 / 24 complete
0 / 2 complete
of complete
of complete
2022
2021
2020
2019
2018
2017
2016
Clostridium botulinum p. , 136
exotoxin production p. 130
food poisoning p. 175
spore formation p. 129
therapeutic uses p. 136
Clostridium botulinum as cause p. 136
Evan Debevec-McKenney
Sam Gillespie, BSc
Clostridia, as a family, are obligate anaerobes, meaning that oxygen is toxic to them.
In nature, they thrive in deep, compact soil, and when they feel the stress of fresh oxygenated air, they often produce spores, which are metabolically inert and extremely resilient to the environment.
Then, when environmental conditions improve, the spores are able to sprout into fully fledged Clostridia.
When doing a Gram stain, Clostridium botulinum stains purple, or Gram positive, and it’s a bacillus, meaning that it looks like a big cylinder or rod under the microscope.
Clostridium botulinum is notorious for producing a toxin, called botulinum toxin, which causes botulism.
Historically, to preserve foods, processes like sausage making and canning became popular.
Unfortunately, since these environments block out air, if a Clostridium botulinum spore gets in during the food preparation process, it can grow and produce botulinum toxin, contaminating the food.
In fact, this is how Clostridium botulinum gets its name, since botulus means sausage in Latin.
When it infects a can, the can begins to bulge with air because the bacteria metabolized sugars into short chain fatty acids that form a gas.
And although the short chain fatty acids are mostly made up of carbon dioxide and hydrogen, the gas is particularly foul smelling.
Now, nerves that use the neurotransmitter acetylcholine are those we use for muscle control.
Upon ingesting a contaminated food product, botulinum toxin works by binding specifically to these nerves, inhibiting muscle contraction.
The toxin comes in eight distinct types, named type A, B, C, D, E, F, G, and H, and they vary in their toxicity.
The neuron takes in the botulinum toxin by endocytosis, creating a small vesicle that floats within the neuron’s cytoplasm.
Clostridium botulinum is a gram-positive, rod-shaped, anaerobe, spore-forming bacterium known to produce botulinum toxin, which causes botulism. Botulism can happen after eating food contaminated with the toxin or by breathing in the toxin. The symptoms of botulism include weakness, dizziness, double vision, drooping of the eyelids, trouble speaking or swallowing, and muscle paralysis. If it's not quickly treated, botulism can lead to death.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.