Clostridia, as a family, are obligate anaerobes, meaning that oxygen is toxic to them.
In nature, they thrive in deep, compact soil, and when they feel the stress of fresh oxygenated air, they often produce spores, which are metabolically inert and extremely resilient to the environment.
Then, when environmental conditions improve, the spores are able to sprout into fully fledged Clostridia.
When doing a Gram stain, Clostridium botulinum stains purple, or Gram positive, and it’s a bacillus, meaning that it looks like a big cylinder or rod under the microscope.
Clostridium botulinum is notorious for producing a toxin, called botulinum toxin, which causes botulism.
Historically, to preserve foods, processes like sausage making and canning became popular.
Unfortunately, since these environments block out air, if a Clostridium botulinum spore gets in during the food preparation process, it can grow and produce botulinum toxin, contaminating the food.
In fact, this is how Clostridium botulinum gets its name, since botulus means sausage in Latin.
When it infects a can, the can begins to bulge with air because the bacteria metabolized sugars into short chain fatty acids that form a gas.
And although the short chain fatty acids are mostly made up of carbon dioxide and hydrogen, the gas is particularly foul smelling.
Now, nerves that use the neurotransmitter acetylcholine are those we use for muscle control.
Upon ingesting a contaminated food product, botulinum toxin works by binding specifically to these nerves, inhibiting muscle contraction.
The toxin comes in eight distinct types, named type A, B, C, D, E, F, G, and H, and they vary in their toxicity.
The neuron takes in the botulinum toxin by endocytosis, creating a small vesicle that floats within the neuron’s cytoplasm.