00:00 / 00:00
of complete
of complete
2024
2023
2022
2021
coarctation of aorta p. 303
labs/findings p. 726
coarctation of aorta and p. 303
Turner syndrome p. 655
coarctation of aorta p. 303
coarctation of aorta and p. 303
Coarctation is a fancy way of saying “narrowing,” so a coarctation of the aorta means a narrowing of the aorta. If we look at the heart, we’ve got the right and left atria, the right and left ventricles, the pulmonary artery leaving the right ventricle to go to the lungs, and the aorta leaving the left ventricle to go to the body.
There are two forms of aortic coarctation to be familiar with: an “infant” form and an “adult” form. With the infant form, which accounts for about 70% of cases, the coarctation comes after the aortic arch, which branches off to the upper extremities and to the head, and before the ductus arteriosus. Now, you might be thinking, “Hey, what’s this ductus arteriosus thing doing here?” Well, typically this guy only exists during fetal development and closes after birth, but with infantile coarctation, the ductus arteriosus is usually still open, or patent, so there’s a patent ductus arteriosus. In fact, sometimes this form is also called preductal coarctation.
So, if we draw out a more simplified version of the heart, we’ve got deoxygenated blood coming into the right atrium that flows into the right ventricle. Now, as it’s pumped out of the pulmonary artery, it’s got two choices, right? One option is to go through the patent ductus arteriosus and continue down the aorta; the other option is to continue down the way it’s going. Well, since it’s higher pressure over here on the left side, you might think that the blood would say “thanks, but no thanks,” and keep going down the lower pressure pulmonary artery. Instead, this aortic coarctation adds a little twist. Since the spot right before the ductus arteriosus is narrower, blood flowing from the left side has a harder time going through, so actually there’s high pressure upstream of the coarctation, but low pressure downstream. So, what happens is that blood decides to go this way, through the patent ductus arteriosus and into the lower pressure area in the systemic circulation, and then continues down to the lower extremities, rather than the slightly higher pressure pulmonary artery. This gives you a real sense of exactly how much this coarctation reduces the pressure over on the systemic side.
Copyright © 2024 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.