Congenital gastrointestinal disorders: Pathology review

7,811views

test

00:00 / 00:00

Congenital gastrointestinal disorders: Pathology review

Pathology Review

Pathology Review

Acyanotic congenital heart defects: Pathology review
Cyanotic congenital heart defects: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Coronary artery disease: Pathology review
Peripheral artery disease: Pathology review
Valvular heart disease: Pathology review
Cardiomyopathies: Pathology review
Heart failure: Pathology review
Supraventricular arrhythmias: Pathology review
Ventricular arrhythmias: Pathology review
Heart blocks: Pathology review
Aortic dissections and aneurysms: Pathology review
Pericardial disease: Pathology review
Endocarditis: Pathology review
Hypertension: Pathology review
Shock: Pathology review
Vasculitis: Pathology review
Cardiac and vascular tumors: Pathology review
Dyslipidemias: Pathology review
Adrenal insufficiency: Pathology review
Adrenal masses: Pathology review
Hyperthyroidism: Pathology review
Hypothyroidism: Pathology review
Thyroid nodules and thyroid cancer: Pathology review
Parathyroid disorders and calcium imbalance: Pathology review
Diabetes mellitus: Pathology review
Cushing syndrome and Cushing disease: Pathology review
Pituitary tumors: Pathology review
Hypopituitarism: Pathology review
Diabetes insipidus and SIADH: Pathology review
Multiple endocrine neoplasia: Pathology review
Eye conditions: Refractive errors, lens disorders and glaucoma: Pathology review
Eye conditions: Retinal disorders: Pathology review
Eye conditions: Inflammation, infections and trauma: Pathology review
Vertigo: Pathology review
Nasal, oral and pharyngeal diseases: Pathology review
Congenital gastrointestinal disorders: Pathology review
Esophageal disorders: Pathology review
GERD, peptic ulcers, gastritis, and stomach cancer: Pathology review
Inflammatory bowel disease: Pathology review
Malabsorption syndromes: Pathology review
Diverticular disease: Pathology review
Appendicitis: Pathology review
Gastrointestinal bleeding: Pathology review
Colorectal polyps and cancer: Pathology review
Pancreatitis: Pathology review
Gallbladder disorders: Pathology review
Jaundice: Pathology review
Viral hepatitis: Pathology review
Cirrhosis: Pathology review
Microcytic anemia: Pathology review
Non-hemolytic normocytic anemia: Pathology review
Intrinsic hemolytic normocytic anemia: Pathology review
Extrinsic hemolytic normocytic anemia: Pathology review
Macrocytic anemia: Pathology review
Heme synthesis disorders: Pathology review
Coagulation disorders: Pathology review
Platelet disorders: Pathology review
Mixed platelet and coagulation disorders: Pathology review
Thrombosis syndromes (hypercoagulability): Pathology review
Lymphomas: Pathology review
Leukemias: Pathology review
Plasma cell disorders: Pathology review
Myeloproliferative disorders: Pathology review
Immunodeficiencies: T-cell and B-cell disorders: Pathology review
Immunodeficiencies: Combined T-cell and B-cell disorders: Pathology review
Immunodeficiencies: Phagocyte and complement dysfunction: Pathology review
Pigmentation skin disorders: Pathology review
Acneiform skin disorders: Pathology review
Papulosquamous and inflammatory skin disorders: Pathology review
Vesiculobullous and desquamating skin disorders: Pathology review
Skin cancer: Pathology review
Viral exanthems of childhood: Pathology review
Back pain: Pathology review
Rheumatoid arthritis and osteoarthritis: Pathology review
Seronegative and septic arthritis: Pathology review
Gout and pseudogout: Pathology review
Systemic lupus erythematosus (SLE): Pathology review
Scleroderma: Pathology review
Sjogren syndrome: Pathology review
Bone disorders: Pathology review
Bone tumors: Pathology review
Myalgias and myositis: Pathology review
Neuromuscular junction disorders: Pathology review
Muscular dystrophies and mitochondrial myopathies: Pathology review
Congenital neurological disorders: Pathology review
Headaches: Pathology review
Seizures: Pathology review
Cerebral vascular disease: Pathology review
Traumatic brain injury: Pathology review
Spinal cord disorders: Pathology review
Central nervous system infections: Pathology review
Movement disorders: Pathology review
Demyelinating disorders: Pathology review
Adult brain tumors: Pathology review
Pediatric brain tumors: Pathology review
Neurocutaneous disorders: Pathology review
Congenital renal disorders: Pathology review
Renal tubular defects: Pathology review
Renal tubular acidosis: Pathology review
Acid-base disturbances: Pathology review
Electrolyte disturbances: Pathology review
Renal failure: Pathology review
Nephrotic syndromes: Pathology review
Nephritic syndromes: Pathology review
Urinary incontinence: Pathology review
Urinary tract infections: Pathology review
Kidney stones: Pathology review
Renal and urinary tract masses: Pathology review
Disorders of sex chromosomes: Pathology review
Prostate disorders and cancer: Pathology review
Testicular tumors: Pathology review
Uterine disorders: Pathology review
Ovarian cysts and tumors: Pathology review
Cervical cancer: Pathology review
Vaginal and vulvar disorders: Pathology review
Benign breast conditions: Pathology review
Breast cancer: Pathology review
Complications during pregnancy: Pathology review
Congenital TORCH infections: Pathology review
Disorders of sexual development and sex hormones: Pathology review
Amenorrhea: Pathology review
Testicular and scrotal conditions: Pathology review
Sexually transmitted infections: Warts and ulcers: Pathology review
Sexually transmitted infections: Vaginitis and cervicitis: Pathology review
HIV and AIDS: Pathology review
Respiratory distress syndrome: Pathology review
Cystic fibrosis: Pathology review
Pneumonia: Pathology review
Tuberculosis: Pathology review
Deep vein thrombosis and pulmonary embolism: Pathology review
Pleural effusion, pneumothorax, hemothorax and atelectasis: Pathology review
Obstructive lung diseases: Pathology review
Restrictive lung diseases: Pathology review
Apnea, hypoventilation and pulmonary hypertension: Pathology review
Lung cancer and mesothelioma: Pathology review
Mood disorders: Pathology review
Amnesia, dissociative disorders and delirium: Pathology review
Personality disorders: Pathology review
Eating disorders: Pathology review
Psychological sleep disorders: Pathology review
Psychiatric emergencies: Pathology review
Drug misuse, intoxication and withdrawal: Hallucinogens: Pathology review
Malingering, factitious disorders and somatoform disorders: Pathology review
Trauma- and stress-related disorders: Pathology review
Schizophrenia spectrum disorders: Pathology review
Drug misuse, intoxication and withdrawal: Stimulants: Pathology review
Drug misuse, intoxication and withdrawal: Alcohol: Pathology review
Developmental and learning disorders: Pathology review
Childhood and early-onset psychological disorders: Pathology review
Disorders of carbohydrate metabolism: Pathology review
Lysosomal storage disorders: Pathology review
Disorders of fatty acid metabolism: Pathology review
Glycogen storage disorders: Pathology review
Disorders of amino acid metabolism: Pathology review
Fat-soluble vitamin deficiency and toxicity: Pathology review
Zinc deficiency and protein-energy malnutrition: Pathology review
Water-soluble vitamin deficiency and toxicity: B1-B7: Pathology review
Peroxisomal disorders: Pathology review
Purine and pyrimidine synthesis and metabolism disorders: Pathology review
Autosomal trisomies: Pathology review
Miscellaneous genetic disorders: Pathology review
Environmental and chemical toxicities: Pathology review
Medication overdoses and toxicities: Pathology review

Assessments

USMLE® Step 1 questions

0 / 8 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 8 complete

A 5-year-old girl is brought to the pediatrician for evaluation of abdominal pain and bloody stools. The symptoms began three-weeks ago. The abdominal pain is intermittent and usually self-resolves within an hour. Past medical history is noncontributory. She has been meeting all developmental milestones. Physical examination reveals a nontender and nondistended abdomen with normal bowel sounds. Laboratory testing reveals the following:
 
 Laboratory value  Result 
 Hemoglobin  15.2 g/dL 
 Platelet count  260,000/mm3 
 Prothrombin time  14 seconds 
 Partial thromboplastin time  32 seconds 
 
A radiolabeled technetium-99 scan is performed and reveals increased uptake in a structure located in the right lower abdominal quadrant. The walls of this structure will most likely consist of which of the following? 

Transcript

Watch video only

A newborn infant boy from Syria, named Ahmad, gets transferred to the neonatal intensive care unit due to an opening in the abdominal wall. On examination, there’s a sac protruding from the center of the abdomen, with visible bowel loops. He was born to a 28 year old mother, who received no prenatal care.

Next, a 5 week old Caucasian boy named Nathaniel is brought to the clinic with bouts of projectile vomiting after every meal. On examination, an olive- shaped mass is palpated in the right upper abdominal quadrant. The baby also has sunken eyes and frontal fontanelle, and poor skin turgor.

Both children have congenital gastrointestinal disorders. Normally, during the fourth week of fetal development, the embryo starts to change from a flat, three-layer disc to something more shaped like a cylinder, a process called embryonic folding. In the horizontal plane, the two lateral folds eventually come together and close off at the midline, except for at the umbilicus, where the umbilical cord connects the fetus to the placenta. This folding allows for the formation of the gut within the abdominal cavity. If those lateral folds don’t close all the way, an opening is left in the abdominal wall, and that’s called gastroschisis, where gastro- refers to the gastrointestinal tract, and -schisis refers to separation.

For your exams, a good hint is that this opening is almost always to the right of the umbilicus, although it’s not really known why. This defect allows the bowel, and sometimes other abdominal organs, like the liver and the gallbladder, to protrude out where they are freely exposed to the outside environment. The result is that these organs become irritated and inflamed.

There is a related condition called an omphalocele, where omphalo- refers to the umbilicus, and -cele refers to hernia or swelling. Normally, during around the sixth week of development, the liver and the intestines grow really quickly, and because the abdominal cavity is still pretty small, there’s limited space, which causes them to herniate through the umbilical ring into the umbilical cord.

At about week 10, though, the abdominal cavity typically has grown enough to allow them to come back from the umbilical cord. With omphalocele, abdominal organs fail to return back to the abdominal cavity, and therefore stay in the umbilical cord all the way through fetal development and even after birth. Omphalocele is associated with chromosomal aneuploidy syndromes, like trisomy 13, also known as Patau syndrome, and trisomy 21, also known as Down’s syndrome.

So, both gastroschisis and omphalocele are abdominal wall defects and involve the abdominal contents herniating out of the abdominal cavity. They can both be suspected prenatally, when alpha- fetoprotein, or AFP, is elevated in the mother’s blood. AFP is only produced by the fetus. It enters the maternal circulation and its levels increase with gestational age or number of fetuses. Remember though, the most common causes of elevated maternal serum AFP levels are dating errors or underestimation of gestational age and multiple gestation, but still, it can be also due to neural tube defects and abdominal wall defects. These defects can be seen with a prenatal ultrasound.

Ultimately, your test’s question will typically center around a newly born infant, whose mother received no prenatal care, and will let you choose between gastroschisis and omphalocele so you need to know the two key differences.

First, in gastroschisis, the abdominal organs protrude through a separate hole on the right side of the umbilicus, while in omphalocele, they protrude through the umbilicus itself, and second, in gastroschisis, the abdominal contents are directly seen, as they are not covered by any peritoneal layer, whereas, in omphalocele, they are clearly contained in a bubble or peritoneal sac.

Now, let’s talk about some other types of congenital herniations. First there’s congenital diaphragmatic hernia where a malformation of the diaphragm leaves a hole that allows the stomach, and sometimes the intestines, to herniate upwards into the thoracic cavity. These abdominal organs push against the developing lung, causing pulmonary hypoplasia. They can also push on blood vessels supplying the lungs, causing pulmonary hypertension. Now an interesting fact is that the herniation is usually towards the left side, so the left lung is more often affected. After birth, the infant can develop respiratory problems like tachypnea, breathing difficulties, respiratory failure and cyanosis.

Next, we have congenital umbilical hernia which is when the intestines herniates through a weakened umbilical fibromuscular ring. So the intestines herniate through the umbilicus instead of to the right of it like in gastroschisis. Another clue is that unlike gastroschisis, the intestines are fully covered by skin, so it looks like a protruding bulge from the bellybutton. Normally, umbilical hernias are self limiting, and disappear within the first 2-5 years of life. However, a large hernia can cause bowel strangulation, resulting in ischemia and necrosis.

Finally, we have indirect inguinal hernia. This happens when the deep inguinal ring in the pelvis fails to close and part of the intestine herniates into the inguinal canal. A high yield concept is how to differentiate this condition from direct inguinal hernias, where the intestines herniate directly through a weakened section of the posterior wall of the inguinal canal, often due to weakened muscles or increased intra-abdominal pressure.

So first, indirect inguinal hernia can be congenital or acquired, but direct inguinal hernia is only acquired. Next, indirect hernia presents as a bulge lateral to the lower epigastric vessels while direct is medial. Third, with an indirect herniation, the intestine goes from the deep inguinal ring to the superficial inguinal ring while a direct herniation only goes through the superficial inguinal ring.

Finally, with indirect herniation, the intestines are covered by 3 layers; the external spermatic fascia, the cremaster muscle, and the internal spermatic fascia, while in direct herniation, the intestines are only covered with external spermatic fascia.

For symptoms, both types cause groin pain, especially when there’s increased abdominal pressure, like when you’re lifting heavy objects, laughing, or coughing. In males, the intestine can protrude into the scrotum, causing pain and a sensation of fullness in the testicles. If the bowels become strangulated, there will be a sudden, severe pain along with nausea, vomiting and sometimes, fever.

So, since we’ve talked about finding the GI viscera where they don’t belong, let’s change gears and talk about atresia, or the absence of parts of the GI tract. So first, there’s esophageal atresia where the esophagus doesn’t develop properly and ends in a blind pouch. This is often associated with a defect in the tracheoesophageal septum, so a problem that often accompanies this condition is tracheoesophageal fistula, where an abnormal connection forms between the esophagus and the trachea.

Since these babies have difficulty swallowing anything, they can present with excessive drooling. When feeding, they’ll gag and throw up the food. The fistula to the trachea also causes problems when feeding, like coughing, choking and even cyanosis! An important complication is food aspiration, which can lead to pneumonia.

Next, we have intestinal atresia, and two common types are duodenal and jejunoileal atresia, but it could also happen in the colon or anus. Remember that duodenal atresia is linked with Down syndrome while jejunoileal atresia is linked with cystic fibrosis. Smoking and premature birth are risk factors for both.

Duodenal atresia is caused by a failure to recanalize. The primitive gut tube undergoes a solid stage where the proliferating cells fill it up, so it’s more like a solid rod. Then, it undergoes recanalization where the lumen re-forms. When it fails in the region that gives rise to the duodenum, we get atresia. Since this region also gives rise to the pancreas and hepatobiliary system, problems like biliary atresia and annular pancreas often accompanies duodenal atresia.

Sources

  1. "Robbins Basic Pathology" Elsevier (2017)
  2. "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  3. "Impact of omphalocele size on associated conditions" Journal of Pediatric Surgery (2008)
  4. "The risk of midgut volvulus in patients with abdominal wall defects: A multi-institutional study" Journal of Pediatric Surgery (2017)
  5. "Special basic science review" Journal of Pediatric Surgery (2000)
  6. "Management of paediatric hernia" BMJ (2017)
  7. "Diagnosis of Inguinal Region Hernias with Axial CT: The Lateral Crescent Sign and Other Key Findings" RadioGraphics (2011)
  8. "Imaging Manifestations of Meckel's Diverticulum" American Journal of Roentgenology (2007)
  9. "Management of asymptomatic or incidental Meckel’s diverticulum" Indian Pediatrics (2009)
  10. "Prenatal Risk Factors and Outcomes in Gastroschisis: A Meta-Analysis" PEDIATRICS (2015)