18,936views
00:00 / 00:00
Pathology
Arterial disease
Angina pectoris
Stable angina
Unstable angina
Myocardial infarction
Prinzmetal angina
Coronary steal syndrome
Peripheral artery disease
Subclavian steal syndrome
Aneurysms
Aortic dissection
Vasculitis
Behcet's disease
Kawasaki disease
Hypertension
Hypertensive emergency
Renal artery stenosis
Coarctation of the aorta
Cushing syndrome
Conn syndrome
Pheochromocytoma
Polycystic kidney disease
Hypotension
Orthostatic hypotension
Abetalipoproteinemia
Familial hypercholesterolemia
Hypertriglyceridemia
Hyperlipidemia
Chronic venous insufficiency
Thrombophlebitis
Deep vein thrombosis
Lymphedema
Lymphangioma
Shock
Vascular tumors
Human herpesvirus 8 (Kaposi sarcoma)
Angiosarcomas
Truncus arteriosus
Transposition of the great vessels
Total anomalous pulmonary venous return
Tetralogy of Fallot
Hypoplastic left heart syndrome
Patent ductus arteriosus
Ventricular septal defect
Coarctation of the aorta
Atrial septal defect
Atrial flutter
Atrial fibrillation
Premature atrial contraction
Atrioventricular nodal reentrant tachycardia (AVNRT)
Wolff-Parkinson-White syndrome
Ventricular tachycardia
Brugada syndrome
Premature ventricular contraction
Long QT syndrome and Torsade de pointes
Ventricular fibrillation
Atrioventricular block
Bundle branch block
Pulseless electrical activity
Tricuspid valve disease
Pulmonary valve disease
Mitral valve disease
Aortic valve disease
Dilated cardiomyopathy
Restrictive cardiomyopathy
Hypertrophic cardiomyopathy
Heart failure
Cor pulmonale
Endocarditis
Myocarditis
Rheumatic heart disease
Pericarditis and pericardial effusion
Cardiac tamponade
Dressler syndrome
Cardiac tumors
Acyanotic congenital heart defects: Pathology review
Cyanotic congenital heart defects: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Coronary artery disease: Pathology review
Peripheral artery disease: Pathology review
Valvular heart disease: Pathology review
Cardiomyopathies: Pathology review
Heart failure: Pathology review
Supraventricular arrhythmias: Pathology review
Ventricular arrhythmias: Pathology review
Heart blocks: Pathology review
Aortic dissections and aneurysms: Pathology review
Pericardial disease: Pathology review
Endocarditis: Pathology review
Hypertension: Pathology review
Shock: Pathology review
Vasculitis: Pathology review
Cardiac and vascular tumors: Pathology review
Dyslipidemias: Pathology review
Cyanotic congenital heart defects: Pathology review
0 / 5 complete
of complete
At the pediatric cardiology clinic, two mothers were chatting about their kids. One mom spoke about a 5 year old boy named Blake, who was a bluish color at birth and had a continuous machine-like heart murmur between the scapulas.
Another mom spoke about her 12 year old son, Paul, who was healthy at birth, but when he was breastfeeding or crying, his skin turned pale, and then blue. As a child, Paul got out of breath easily and needed to squat down to recover. And during his school physical, he was found to have a heart murmur.
Both Blake and Paul have cyanotic congenital heart defects, or CHDs, which usually start causing problems within the first 3-8 weeks of life. They can be broadly grouped into life-threatening cyanotic heart defects, or the less dangerous acyanotic heart defects.
Let’s go over 5 of the life-threatening cyanotic congenital heart defects: persistent truncus arteriosus, transposition of the great vessels, tetralogy of fallot, total anomalous pulmonary venous return, and tricuspid atresia.
Now the first 3 are caused by outflow tract defects that develop during the formation of the aorta and pulmonary artery. In fetal development the heart looks like a long tube; the top part is the truncus arteriosus and the part inferior to that is the bulbus cordis. Neural crest cells migrate into the bulbus cordis and trigger the formation of the aorticopulmonary septum. This structure is formed when two endocardial cushions appear on the right-superior and left-inferior walls. These grow like a spiral - imagine a corkscrew - and they wrap around each other forming a single septum that divides the truncus into the roots of the aorta. One root connects to the primitive left ventricle, and the other connects to the pulmonary artery and primitive right ventricle. That’s how blood gets routed to the right place!
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.