Skip to content

DNA structure

Assessments
DNA structure

Flashcards

0 / 7 complete

Questions

0 / 1 complete
High Yield Notes
15 pages
Flashcards

DNA structure

7 flashcards
Preview

The DNA strands are said to run to each other because they each run in opposite directions.

Questions

USMLE® Step 1 style questions USMLE

1 questions

USMLE® Step 2 style questions USMLE

1 questions
Preview

A 52-year-old woman comes to the office because of blisters on her hand. She returned from vacation in Mexico yesterday. She says that while on vacation, she did several shots of tequila chased by lime, after which the lesion appeared. She says that she thinks that the lime burned her skin. Which of the following mechanisms best describes the cause of the lesion?


DNA structure

External References
Transcript

Content Reviewers:

Rishi Desai, MD, MPH

Buried deep within the nucleus, lies our genetic information, called DNA - which stands for deoxyribonucleic acid.

DNA is made up of two strands that are coiled around one another in a double helix.

Each of the two strands that make up DNA is a polynucleotide chain - so it’s a string of nucleotides one after another.

Nucleotides are organic molecules that are made up of a 5-carbon sugar, a phosphate group and a nitrogenous base - also called a nucleobase - or, simply, a “base”.

For DNA, the 5-carbon sugar is deoxyribose. Deoxyribose looks like a pentagon, and the tips of the pentagon are 4 carbons and an oxygen molecule.

The 5th carbon is outside the ring, and it binds to the phosphate group.

The sugar and phosphate elements are the same for the 4 nucleotides that make up DNA - the difference comes from the nucleobase, which is attached to the first carbon of the sugar.

There are four nucleobases that make up and give DNA nucleotides their name - adenine, or A, thymine, or T, cytosine, or C and guanine, or G.

Structurally, these bases can be either purines or pyrimidines - the purines, guanine and adenine, are made up of 2 heterocyclic rings.

The pyrimidines, cytosine and thymine, are made up of a single ring.

You can remember this with “CUT PYe (pie)” - because cytosine and thymine along with uracil, which is a nucleotide found in RNA, are all Pyrimidines.

The nucleotides bind to one another using their sugar and phosphate groups.

The phosphate group on the 5th carbon of the sugar of one nucleotide - also called the 5’ carbon - forms a covalent bond with the 3rd carbon on the sugar of the next nucleotide - also called the 3’ carbon.

This gives each DNA strand a sugar-phosphate backbone, as well as a “direction” - one of the strands runs from the 5’ end towards the 3’ end, while the other one runs from 3’ to 5’.

This makes DNA an “antiparallel” molecule - it’s a bit like two snakes coiled up together but facing different directions.

However, to form the double helix, the nucleotides use their bases - A, T, C, G to form hydrogen bonds with bases on the opposing strand.

Bases form bonds according to the rule of “complementary base pairing” - which states that in DNA, A always pairs with T, by means of two hydrogen bonds, while C always pairs with G, through three hydrogen bonds.

The hydrogen bonds are much weaker than the covalent bonds that hold the strands together - so they can be easily broken and reformed when DNA is being transcribed into RNA or being replicated during cell division.

Now, DNA is actually a very organized molecule, because the two strands coil around each other once every 10 base pairs.

This twisting and turning makes the DNA molecule develop major and minor grooves, which are larger or smaller spaces between the strands where proteins can bind to DNA in order to regulate its functions.

DNA is also a surprisingly long molecule - over 2 meters long when fully stretched.

To make 46 of these DNA molecules - meaning one molecule for each chromosome - fit into a tiny nucleus, our cells rely on a few packaging tricks.