DNA synthesis inhibitors: Fluoroquinolones

00:00 / 00:00

Videos

Notes

DNA synthesis inhibitors: Fluoroquinolones

Prerequisite basic sciences

Prerequisite basic sciences

Attributable risk (AR)

Bias in interpreting results of clinical studies

Bias in performing clinical studies

Clinical trials

Confounding

DALY and QALY

Direct standardization

Disease causality

Incidence and prevalence

Indirect standardization

Interaction

Mortality rates and case-fatality

Odds ratio

Positive and negative predictive value

Prevention

Relative and absolute risk

Selection bias

Sensitivity and specificity

Study designs

Test precision and accuracy

Acyanotic congenital heart defects: Pathology review

Adrenal masses: Pathology review

Bacterial and viral skin infections: Pathology review

Bone tumors: Pathology review

Coagulation disorders: Pathology review

Congenital neurological disorders: Pathology review

Cyanotic congenital heart defects: Pathology review

Extrinsic hemolytic normocytic anemia: Pathology review

Eye conditions: Inflammation, infections and trauma: Pathology review

Eye conditions: Refractive errors, lens disorders and glaucoma: Pathology review

Headaches: Pathology review

Intrinsic hemolytic normocytic anemia: Pathology review

Leukemias: Pathology review

Lymphomas: Pathology review

Macrocytic anemia: Pathology review

Microcytic anemia: Pathology review

Mixed platelet and coagulation disorders: Pathology review

Nasal, oral and pharyngeal diseases: Pathology review

Nephritic syndromes: Pathology review

Nephrotic syndromes: Pathology review

Non-hemolytic normocytic anemia: Pathology review

Pediatric brain tumors: Pathology review

Pediatric musculoskeletal disorders: Pathology review

Platelet disorders: Pathology review

Renal and urinary tract masses: Pathology review

Seizures: Pathology review

Viral exanthems of childhood: Pathology review

Pharmacodynamics: Agonist, partial agonist and antagonist

Pharmacodynamics: Desensitization and tolerance

Pharmacodynamics: Drug-receptor interactions

Pharmacokinetics: Drug absorption and distribution

Pharmacokinetics: Drug elimination and clearance

Pharmacokinetics: Drug metabolism

Prerequisite basic sciences

Growth hormone and somatostatin

Prerequisite basic sciences

Breastfeeding

Prerequisite basic sciences

Androgens and antiandrogens

Estrogens and antiestrogens

Miscellaneous cell wall synthesis inhibitors

Protein synthesis inhibitors: Tetracyclines

Cell wall synthesis inhibitors: Penicillins

Antihistamines for allergies

Acetaminophen (Paracetamol)

Non-steroidal anti-inflammatory drugs

Antimetabolites: Sulfonamides and trimethoprim

Antituberculosis medications

Cell wall synthesis inhibitors: Cephalosporins

Cell wall synthesis inhibitors: Penicillins

DNA synthesis inhibitors: Fluoroquinolones

DNA synthesis inhibitors: Metronidazole

Miscellaneous cell wall synthesis inhibitors

Miscellaneous protein synthesis inhibitors

Protein synthesis inhibitors: Aminoglycosides

Protein synthesis inhibitors: Tetracyclines

Bronchodilators: Beta 2-agonists and muscarinic antagonists

Bronchodilators: Leukotriene antagonists and methylxanthines

Pulmonary corticosteroids and mast cell inhibitors

Glucocorticoids

Bronchodilators: Beta 2-agonists and muscarinic antagonists

Bronchodilators: Leukotriene antagonists and methylxanthines

Azoles

Glucocorticoids

Pulmonary corticosteroids and mast cell inhibitors

Acetaminophen (Paracetamol)

Non-steroidal anti-inflammatory drugs

Antimetabolites: Sulfonamides and trimethoprim

Cell wall synthesis inhibitors: Cephalosporins

Cell wall synthesis inhibitors: Penicillins

Miscellaneous protein synthesis inhibitors

Protein synthesis inhibitors: Tetracyclines

Pharmacodynamics: Agonist, partial agonist and antagonist

Pharmacodynamics: Desensitization and tolerance

Pharmacodynamics: Drug-receptor interactions

Pharmacokinetics: Drug absorption and distribution

Pharmacokinetics: Drug elimination and clearance

Pharmacokinetics: Drug metabolism

Cell wall synthesis inhibitors: Cephalosporins

Glucocorticoids

Miscellaneous protein synthesis inhibitors

Anticonvulsants and anxiolytics: Barbiturates

Anticonvulsants and anxiolytics: Benzodiazepines

Nonbenzodiazepine anticonvulsants

Cell wall synthesis inhibitors: Cephalosporins

Cell wall synthesis inhibitors: Penicillins

Miscellaneous cell wall synthesis inhibitors

Assessments

DNA synthesis inhibitors: Fluoroquinolones

Flashcards

0 / 18 complete

Flashcards

DNA synthesis inhibitors: Fluoroquinolones

of complete

External References

First Aid

2022

2021

2020

2019

2018

2017

2016

Ciprofloxacin

for Crohn disease p. 391

cytochrome P-448 and p. 253

fluoroquinolones p. 192

mechanism (diagram) p. 184

meningococci p. 140

Mycobacterium avium- intracellulare p. , 193

prophylaxis p. 195

Pseudomonas aeruginosa p. , 141

Transcript

Content Reviewers

Our bodies consist of eukaryotic cells, while bacterias consist of prokaryotic cells.

So, in order to treat bacterial infections we can develop antimicrobials that only target prokaryotic cells while leaving our cells mostly unharmed.

One of these targets is bacterial DNA, and we call these medications DNA inhibitors or nucleic acid inhibitors.

There are plenty of processes and enzymes involved that we can target and the quinolones and fluoroquinolones inhibit an enzyme called DNA topoisomerase.

So there are many different types of topoisomerases but we’ll be looking at topoisomerase II, also called DNA gyrase, and topoisomerase IV.

Both types of topoisomerases cause double strand breaks in DNA, but at different points during mitosis.

Topoisomerase II plays a role in condensing the chromosomes by making a double strand break in the DNA so that it can be more tightly wound, causing a supercoil.

When enough supercoils are induced, the DNA condenses.

Topoisomerase IV plays a role later on, after the chromosome has been replicated, where it causes a double strand break in the DNA so the new DNA strand can be disentangled from the original.

Now, quinolones are created to target bacterial topoisomerases, but it was soon discovered that by adding a fluorine molecule to the quinolones, they become more effective.

So these newer medications, called fluoroquinolones, replaced the older quinolones in most clinical settings.

Common fluoroquinolones include ciprofloxacin, ofloxacin, balofloxacin, levofloxacin, gemifloxacin, and moxifloxacin.

One way to tell a fluoroquinolone apart from other antimicrobials is that they all have the suffix “-floxacin.”

These medications can be taken peroral or via IV, but ciprofloxacin and ofloxacin are also available in otic formulations, while moxifloxacin is also available in ophthalmic solutions.

Now fluoroquinolones are broad spectrum bactericidal antibiotics and ciprofloxacin in particular is widely used.

They are very effective against gram negative bacterias like Enterobacteriaceae, Haemophilus, Legionella, Neisseria, Moraxella, and even Pseudomonas species.

Elsevier

Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX