00:00 / 00:00
of complete
of complete
Laboratory value | Result |
Sodium | 150 mEq/L |
Serum osmolality | 309 mOsmol/kg |
Urine osmolality | 187 mOsmol/kg |
2024
2023
2022
2021
for diabetes insipidus p. 349
in diabetes insipidus p. 342
diabetes insipidus and p. 248, 349
antidiuretic hormone in p. 338
demeclocycline and p. 362
desmopressin acetate for p. 362
drug reaction and p. 248
lithium p. 592
lithium toxicity p. 587
potassium-sparing diuretics for p. 627
thiazides for p. 627
for diabetes insipidus p. 342
diabetes insipidus p. 349
for diabetes insipidus p. 349
diabetes insipidus and p. 248, 349
diabetes insipidus p. 342
diabetes insipidus p. 349
With diabetes insipidus, “diabetes” means an increased passing of urine, and “insipidus” means tasteless; so diabetes insipidus is a condition characterized by the production of large quantities of dilute and tasteless urine.
The tasteless urine of diabetes insipidus distinguishes it from diabetes mellitus which describes sweet tasting urine- and, yes, urine was really tasted at one point in time to make that distinction!
Now, in the brain there’s a region called the hypothalamus.
Inside the hypothalamus are osmoreceptors, which can sense the osmolality of the blood, or how concentrated it is.
Osmolality is the concentration of dissolved particles in the blood plasma, or the liquid portion of blood.
There are a number of dissolved particles in the blood plasma, but the major ones are glucose, sodium, and blood urea nitrogen, and a normal osmolality is between 285 and 295 milli Osmoles per kilogram.
During periods of dehydration there is an increase in concentration of these particles in the blood and osmolality increases.
The osmoreceptors in the hypothalamus detect the increased osmolality and that triggers the sensation of thirst, which tells us to drink more water. The water then gets absorbed and dilutes the blood, bringing the osmolality back to normal.
In addition to osmoreceptors, the hypothalamus also contains a cluster of neurons that are found in a specific spot called the supraoptic nucleus.
These neurons produce a hormone called antidiuretic hormone, or ADH. ADH is also called vasopressin because it causes smooth muscle around the blood vessels to contract, which increases blood resistance and raises blood pressure.
When the osmoreceptors detect high osmolality, they signal the supraoptic nucleus to send ADH down the supraoptico-hypophyseal tract, which runs through the infundibulum or pituitary stalk, and into the posterior pituitary gland, where it is then released into the blood.
ADH travels to the kidneys, specifically to the distal convoluted tubule and collecting ducts of the nephrons and binds to a receptor called vasopressin receptor 2, or AVPR2.
Diabetes insipidus is when the body cannot regulate its fluid levels properly and loses a lot of water in the urine. There are two major types of diabetes insipidus, which are central and nephrogenic diabetes insipidus. Central diabetes insipidus occurs when the hypothalamus is not producing enough antidiuretic hormone (ADH). ADH ensures that the kidneys produce less urine and reduce water loss. On the other hand, nephrogenic diabetes insipidus results from the kidneys failing to respond to ADH. People with diabetes insipidus present with excessive quantities of diluted urine (polyuria), resulting in excessive thirst (polydipsia).
Copyright © 2024 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.