Diabetes mellitus: Clinical (To be retired)

1,386,090views

00:00 / 00:00

Videos

Notes

Diabetes mellitus: Clinical (To be retired)

Medicine and surgery

Allergy and immunology

Antihistamines for allergies

Glucocorticoids

Cardiology, cardiac surgery and vascular surgery

Coronary artery disease: Clinical (To be retired)

Heart failure: Clinical (To be retired)

Syncope: Clinical (To be retired)

Hypertension: Clinical (To be retired)

Hypercholesterolemia: Clinical (To be retired)

Peripheral vascular disease: Clinical (To be retired)

Leg ulcers: Clinical (To be retired)

Adrenergic antagonists: Alpha blockers

Adrenergic antagonists: Beta blockers

ACE inhibitors, ARBs and direct renin inhibitors

Thiazide and thiazide-like diuretics

Calcium channel blockers

Lipid-lowering medications: Statins

Lipid-lowering medications: Fibrates

Miscellaneous lipid-lowering medications

Antiplatelet medications

Dermatology and plastic surgery

Hypersensitivity skin reactions: Clinical (To be retired)

Eczematous rashes: Clinical (To be retired)

Papulosquamous skin disorders: Clinical (To be retired)

Alopecia: Clinical (To be retired)

Hypopigmentation skin disorders: Clinical (To be retired)

Benign hyperpigmented skin lesions: Clinical (To be retired)

Skin cancer: Clinical (To be retired)

Endocrinology and ENT (Otolaryngology)

Diabetes mellitus: Clinical (To be retired)

Hyperthyroidism: Clinical (To be retired)

Hypothyroidism and thyroiditis: Clinical (To be retired)

Dizziness and vertigo: Clinical (To be retired)

Hyperthyroidism medications

Hypothyroidism medications

Insulins

Hypoglycemics: Insulin secretagogues

Miscellaneous hypoglycemics

Gastroenterology and general surgery

Gastroesophageal reflux disease (GERD): Clinical (To be retired)

Peptic ulcers and stomach cancer: Clinical (To be retired)

Diarrhea: Clinical (To be retired)

Malabsorption: Clinical (To be retired)

Colorectal cancer: Clinical (To be retired)

Diverticular disease: Clinical (To be retired)

Anal conditions: Clinical (To be retired)

Cirrhosis: Clinical (To be retired)

Breast cancer: Clinical (To be retired)

Laxatives and cathartics

Antidiarrheals

Acid reducing medications

Hematology and oncology

Anemia: Clinical (To be retired)

Anticoagulants: Warfarin

Anticoagulants: Direct factor inhibitors

Antiplatelet medications

Infectious diseases

Pneumonia: Clinical (To be retired)

Urinary tract infections: Clinical (To be retired)

Skin and soft tissue infections: Clinical (To be retired)

Protein synthesis inhibitors: Aminoglycosides

Antimetabolites: Sulfonamides and trimethoprim

Miscellaneous cell wall synthesis inhibitors

Protein synthesis inhibitors: Tetracyclines

Cell wall synthesis inhibitors: Penicillins

Miscellaneous protein synthesis inhibitors

Cell wall synthesis inhibitors: Cephalosporins

DNA synthesis inhibitors: Metronidazole

DNA synthesis inhibitors: Fluoroquinolones

Herpesvirus medications

Azoles

Echinocandins

Miscellaneous antifungal medications

Anti-mite and louse medications

Nephrology and urology

Chronic kidney disease: Clinical (To be retired)

Kidney stones: Clinical (To be retired)

Urinary incontinence: Pathology review

ACE inhibitors, ARBs and direct renin inhibitors

PDE5 inhibitors

Adrenergic antagonists: Alpha blockers

Neurology and neurosurgery

Stroke: Clinical (To be retired)

Lower back pain: Clinical (To be retired)

Headaches: Clinical (To be retired)

Migraine medications

Pulmonology and thoracic surgery

Asthma: Clinical (To be retired)

Chronic obstructive pulmonary disease (COPD): Clinical (To be retired)

Lung cancer: Clinical (To be retired)

Antihistamines for allergies

Bronchodilators: Beta 2-agonists and muscarinic antagonists

Bronchodilators: Leukotriene antagonists and methylxanthines

Pulmonary corticosteroids and mast cell inhibitors

Rheumatology and orthopedic surgery

Joint pain: Clinical (To be retired)

Rheumatoid arthritis: Clinical (To be retired)

Lower back pain: Clinical (To be retired)

Anatomy clinical correlates: Clavicle and shoulder

Anatomy clinical correlates: Arm, elbow and forearm

Anatomy clinical correlates: Wrist and hand

Anatomy clinical correlates: Median, ulnar and radial nerves

Anatomy clinical correlates: Bones, joints and muscles of the back

Anatomy clinical correlates: Hip, gluteal region and thigh

Anatomy clinical correlates: Knee

Anatomy clinical correlates: Leg and ankle

Anatomy clinical correlates: Foot

Acetaminophen (Paracetamol)

Non-steroidal anti-inflammatory drugs

Glucocorticoids

Opioid agonists, mixed agonist-antagonists and partial agonists

Antigout medications

Non-biologic disease modifying anti-rheumatic drugs (DMARDs)

Osteoporosis medications

Assessments

Diabetes mellitus: Clinical (To be retired)

USMLE® Step 2 questions

0 / 31 complete

Questions

USMLE® Step 2 style questions USMLE

of complete

A 55-year-old man comes to the emergency department with fevers and a cough for the past week. The fever is intermittent and associated with a dull headache. The cough is non-productive, and the patient denies sore throat, nasal congestion, shortness of breath, or chest pain. He has a history of type 2 diabetes mellitus diagnosed 5 years ago. Initially, the patient was prescribed oral antihyperglycemics, but he switched to herbal remedies after one month because of side effects. The patient has never smoked cigarettes. He is employed as a groundskeeper at a local country club. The patient’s temperature is 36.4°C (97.5°F), pulse is 100/min, respirations are 20/min, and blood pressure is 120/70 mmHg. Physical examination shows occasional coarse left-sided crackles on lung auscultation. Neurologic and skin examinations are normal. Serum laboratory studies show the following:  
 
 Laboratory value  Result 
 White blood cells  28,000 /mm3 
 Creatinine  2.3 mg/dL 
 Glucose  374 mg/dL 
 Bicarbonate  19 mEq/L 
 Ketones  Positive 
Chest X-ray shows homogenous opacities in the left upper lobe. Nasal endoscopy shows extensive inflammation of the left nasal cavity and maxillary sinus. Sputum microscopy shows the following:  


 Reproduced from: Wikimedia Commons  

Which of the following antimicrobial agents is most appropriate to administer to this patient?

Transcript

Content Reviewers

Rishi Desai, MD, MPH

Contributors

Marisa Pedron

Evan Debevec-McKenney

In diabetes mellitus, the body has trouble moving glucose from your blood into the cells – so blood sugar levels are constantly high. Insulin stimulates the movement of glucose into the cells, and glucagon stimulates the movement of glucose into the blood. In type I diabetes the blood glucose stays high because of an autoimmune destruction of the pancreas, which leads to low insulin levels. In type II diabetes, the body makes insulin, but the cells are insulin resistant - meaning they don’t “respond” to insulin by taking glucose in.

Cells’ inability to use insulin translates in classical symptoms of diabetes like polyuria – individuals pee a lot -, polydipsia – they drink a lot of water -, sometimes polyphagia – they eat a lot – and unexplained weight loss. Both type I and type II diabetes get these symptoms – however, with type I, the onset is usually abrupt and usually affects people under 30. With type II, the symptoms gradually worsen over a few months, and individuals usually have risk factors like being over 45 years old, having a first degree relative with type II diabetes mellitus, a body mass index (BMI) over 25, a sedentary lifestyle, or cardiovascular disease, like hypertension.

Now, type II diabetes accounts for about 90% of the diabetes cases, so let’s start there. Diagnosing type II diabetes relies on determining blood sugar levels using one of four tests. The first, and most common test, is a fasting glucose test and it’s where the person doesn’t eat or drink anything except water for 8 hours. Levels of 100 milligrams per deciliter to 125 milligrams per deciliter indicates prediabetes and a level of 126 milligrams per deciliter or higher indicates diabetes. Usually this test is done twice, and two results over 126 milligrams per deciliter are sufficient to diagnose a person with diabetes. Second, we have the oral glucose tolerance test, and it’s where a person is given 75 grams of glucose, and then blood samples are taken at time intervals to figure out how well it’s being cleared from the blood. At the time interval of 2 hours later, a level of 140 milligrams per deciliter to 199 milligrams per deciliter indicates prediabetes, and a level of 200 or above indicates diabetes. However, these two tests have one shortcoming - they only show what’s happening to blood glucose levels in that particular moment in time, so we have no idea how long blood sugar levels have been high. This is where our third test comes in - the HbA1c, which is the proportion of glycated hemoglobin in the blood. When blood glucose levels stay high for too long, glucose begins to stick to proteins that are floating around in the blood or in cells - like hemoglobin. HbA1c levels of 5.7% to 6.4% indicate prediabetes, and 6.5% or higher indicates diabetes. Since red blood cells - and hemoglobin - typically hang around in the blood for up to 4 months, this test reflects blood glucose levels over the past few months. Finally, there’s our fourth test, called a non-fasting or random glucose test, which can be done at any time. A red flag for diabetes is when this test shows a blood glucose level of 200 milligrams per deciliter or higher in an individual that has classic symptoms, like polyuria or polydipsia; or a hyperglycemic crisis.

Summary

Diabetes mellitus is a metabolic condition characterized by high blood sugar levels (glycemia). The two types of diabetes mellitus are type 1 and type 2. Type 1 Diabetes Mellitus, also called insulin-dependent diabetes, usually begins in childhood or adolescence. In this form of the disease, an autoimmune process triggers the destruction of pancreatic beta cells responsible for producing insulin, and thus the body produces little or no insulin. Insulin is a hormone that helps the body to use sugar for energy.

Type 2 diabetes mellitus, also called non-insulin-dependent diabetes, usually begins in adulthood. In this type, the body produces insulin but becomes resistant to it, meaning it cannot use it effectively. Type 2 diabetes mellitus has a genetic component, and a sedentary lifestyle and obesity significantly elevate its risk.

Elsevier

Copyright © 2023 Elsevier, except certain content provided by third parties

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX