00:00 / 00:00
Biochemistry
Glycolysis
Citric acid cycle
Electron transport chain and oxidative phosphorylation
Gluconeogenesis
Glycogen metabolism
Pentose phosphate pathway
Physiological changes during exercise
Amino acid metabolism
Nitrogen and urea cycle
Fatty acid synthesis
Fatty acid oxidation
Ketone body metabolism
Cholesterol metabolism
Essential fructosuria
Hereditary fructose intolerance
Galactosemia
Pyruvate dehydrogenase deficiency
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Lactose intolerance
Glycogen storage disease type I
Glycogen storage disease type II (NORD)
Glycogen storage disease type III
Glycogen storage disease type IV
Glycogen storage disease type V
Leukodystrophy
Metachromatic leukodystrophy (NORD)
Krabbe disease
Gaucher disease (NORD)
Niemann-Pick disease types A and B (NORD)
Niemann-Pick disease type C
Fabry disease (NORD)
Tay-Sachs disease (NORD)
Mucopolysaccharide storage disease type 1 (Hurler syndrome) (NORD)
Mucopolysaccharide storage disease type 2 (Hunter syndrome) (NORD)
Cystinosis
Hartnup disease
Alkaptonuria
Ornithine transcarbamylase deficiency
Phenylketonuria (NORD)
Cystinuria (NORD)
Homocystinuria
Maple syrup urine disease
Abetalipoproteinemia
Familial hypercholesterolemia
Hypertriglyceridemia
Hyperlipidemia
Disorders of carbohydrate metabolism: Pathology review
Disorders of fatty acid metabolism: Pathology review
Dyslipidemias: Pathology review
Glycogen storage disorders: Pathology review
Lysosomal storage disorders: Pathology review
Disorders of amino acid metabolism: Pathology review
Disorders of fatty acid metabolism: Pathology review
0 / 2 complete
of complete
Antonia Syrnioti, MD
Two kids are brought to the clinic by their mothers. The first one’s Dalia, a 2 year old girl. Her mother is concerned because Dalia always seems to be tired and weak, and in general doesn’t eat much. On physical examination of the abdomen, you palpate an enlarged liver. You decide to run a blood test, which reveals that her blood glucose and ketone bodies are decreased, but what really stands out to you is that her carnitine levels are also really low.
After Dalia, you see Luca, a 3 year old boy who had a brief seizure earlier that day. Luca’s mother tells you that he’s had gastroenteritis for the past few days, so he’s been vomiting and not eating much. You decide to run a blood test, which also reveals low blood glucose and ketone bodies, but unlike Dalia, he has high levels of fatty acyl-carnitine.
Based on the initial presentation, both Dalia and Luca seem to have some fatty acid metabolism disorder. Now, let’s review fatty acid metabolism real quick. Normally, the body's main source of energy is the glucose we get from food. When glucose is running low, like with prolonged fasting or exercise, the body is able to obtain energy from stored fats.
The simplest form of fats are fatty acids, which are grouped by length into short, medium, long, and very long chain fatty acids. Short and medium chain fatty acids are primarily obtained from the diet, while long and very long chain fatty acids can be synthesized from acetyl-CoA by the liver and fat cells.
Now, keep in mind that acetyl-CoA is usually found in the mitochondrial matrix, whereas the enzymes required for fatty acid synthesis are all in the cytoplasm. For acetyl-CoA to cross the mitochondrial membranes and get to the cytoplasm, it first needs to combine with oxaloacetate to form citrate. Once in the cytoplasm, an enzyme called citrate lyase leaves citrate back into acetyl-CoA and oxaloacetate. This whole process is called the citrate shuttle.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.