00:00 / 00:00
Genetics
Achondroplasia
Alagille syndrome (NORD)
Familial adenomatous polyposis
Familial hypercholesterolemia
Hereditary spherocytosis
Huntington disease
Li-Fraumeni syndrome
Marfan syndrome
Multiple endocrine neoplasia
Myotonic dystrophy
Neurofibromatosis
Polycystic kidney disease
Treacher Collins syndrome
Tuberous sclerosis
von Hippel-Lindau disease
Albinism
Alpha-thalassemia
Beta-thalassemia
Cystic fibrosis
Friedreich ataxia
Gaucher disease (NORD)
Glycogen storage disease type I
Glycogen storage disease type II (NORD)
Glycogen storage disease type III
Glycogen storage disease type IV
Glycogen storage disease type V
Hemochromatosis
Krabbe disease
Leukodystrophy
Mucopolysaccharide storage disease type 1 (Hurler syndrome) (NORD)
Niemann-Pick disease type C
Niemann-Pick disease types A and B (NORD)
Phenylketonuria (NORD)
Polycystic kidney disease
Primary ciliary dyskinesia
Sickle cell disease (NORD)
Tay-Sachs disease (NORD)
Wilson disease
Cri du chat syndrome
Williams syndrome
Angelman syndrome
Prader-Willi syndrome
Beckwith-Wiedemann syndrome
Mitochondrial myopathy
Klinefelter syndrome
Turner syndrome
Fragile X syndrome
Friedreich ataxia
Huntington disease
Myotonic dystrophy
Down syndrome (Trisomy 21)
Edwards syndrome (Trisomy 18)
Patau syndrome (Trisomy 13)
Alport syndrome
Fragile X syndrome
Fabry disease (NORD)
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Hemophilia
Lesch-Nyhan syndrome
Mucopolysaccharide storage disease type 2 (Hunter syndrome) (NORD)
Muscular dystrophy
Ornithine transcarbamylase deficiency
Wiskott-Aldrich syndrome
X-linked agammaglobulinemia
Autosomal trisomies: Pathology review
Miscellaneous genetic disorders: Pathology review
Muscular dystrophies and mitochondrial myopathies: Pathology review
Down syndrome (Trisomy 21)
0 / 17 complete
0 / 8 complete
of complete
of complete
Laboratory value | Result |
Maternal serum alpha fetoprotein | Low |
Unconjugated estriol | Low |
β-HCG | High |
Inhibin A | High |
2022
2021
2020
2019
2018
2017
2016
Down syndrome p. 306
ALL and AML in p. 440
cardiac defect association p. 306
cataracts and p. 554
chromosome associated with p. 61
duodenal atresia and p. 368
hCG in p. 658
Hirschsprung disease and p. 393
presentation p. 714
Down syndrome p. 61
Down syndrome p. 61
Down syndrome p. 306
As you’re probably well-aware, our DNA is like this humongous blueprint of information on how to make a human.
Usually this massive document is packaged up nicely into a storage bin called a chromosome.
Actually, usually we have 46 chromosomes that we use to neatly organize all our information, depending on how you define organize.
Each of the 46 chromosomes is actually part of a pair of chromosomes, since you get one from each parent, so 23 pairs.
If you wanted to make another human, first you’d have to find someone that feels the same way, and then you both contribute half of your chromosomes, so one from each pair, right? Fifty-fifty.
Now, what if someone contributes one too many? Say Dad contributes 23 and Mom contributes 24, is that possible?
Yes, and it’s the basis of one of the most common chromosomal disorders—Down Syndrome.
Someone with Down syndrome has 47 chromosomes instead of 46, specifically they have an extra copy of chromosome 21, so instead of two, they have three, so Down Syndrome’s also known as trisomy 21, in other words, “three chromosome 21s”.
Alright, so in order to package up half the chromosomes into either a sperm cell or an egg cell, you actually start with a single cell that has 46 chromosomes, let’s just say we’re making an egg cell for the mother, I’m just going to show one pair of chromosomes, but remember that all 23 pairs do this.
So the process of meiosis starts, which is what produces our sex cells, and the chromosomes replicate, and so now they’re sort of shaped like an ‘X’—even though there are two copies of DNA here, we still say it’s one chromosome since they’re hooked together in the middle by this thing called a centromere.
OK then the cell splits in two, and pulls apart the paired chromosomes, so in each of these cells you’ve now got 23 chromosomes.
Now the two copies of the chromosome get pulled apart, and the cells split again, which means four cells, each still with 23 chromosomes.
Now these are ready to pair up with a sperm cell from dad that has 23 chromosomes as well, totaling to 46 chromosomes, and voila–nine months down the road you’ve got yourself a baby.
Now, with Down Syndrome or trisomy 21, a process called nondisjunction accounts for about 95% of cases.
Non-disjunction means the chromosomes don’t split apart.
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.