ECG basics

3,589,691views

00:00 / 00:00

ECG basics

PCV

PCV

Lung volumes and capacities
Asthma
Bronchodilators: Beta 2-agonists and muscarinic antagonists
Bronchodilators: Leukotriene antagonists and methylxanthines
Pulmonary corticosteroids and mast cell inhibitors
Emphysema
Pneumothorax
Chronic bronchitis
Diffusion-limited and perfusion-limited gas exchange
Obstructive lung diseases: Pathology review
Chronic obstructive pulmonary disease (COPD): Clinical
Ventilation-perfusion ratios and V/Q mismatch
Reading a chest X-ray
Regulation of pulmonary blood flow
Restrictive lung diseases
Compliance of lungs and chest wall
Gas exchange in the lungs, blood and tissues
Anatomy of the lungs and tracheobronchial tree
Diffuse parenchymal lung disease: Clinical
Combined pressure-volume curves for the lung and chest wall
Pulmonary hypertension
Pulmonary shunts
Pulmonary embolism
Tuberculosis: Pathology review
Long QT syndrome and Torsade de pointes
Cardiovascular system anatomy and physiology
Lymphatic system anatomy and physiology
Coronary circulation
Blood pressure, blood flow, and resistance
Pressures in the cardiovascular system
Laminar flow and Reynolds number
Resistance to blood flow
Compliance of blood vessels
Control of blood flow circulation
Microcirculation and Starling forces
Measuring cardiac output (Fick principle)
Stroke volume, ejection fraction, and cardiac output
Cardiac contractility
Frank-Starling relationship
Cardiac preload
Cardiac afterload
Law of Laplace
Cardiac and vascular function curves
Altering cardiac and vascular function curves
Cardiac work
Cardiac cycle
Pressure-volume loops
Changes in pressure-volume loops
Physiological changes during exercise
Cardiovascular changes during hemorrhage
Cardiovascular changes during postural change
Normal heart sounds
Abnormal heart sounds
Action potentials in myocytes
Action potentials in pacemaker cells
Excitability and refractory periods
Cardiac excitation-contraction coupling
Electrical conduction in the heart
Cardiac conduction velocity
ECG basics
ECG normal sinus rhythm
ECG intervals
ECG QRS transition
ECG axis
ECG rate and rhythm
ECG cardiac infarction and ischemia
ECG cardiac hypertrophy and enlargement
Baroreceptors
Chemoreceptors
Renin-angiotensin-aldosterone system
ACE inhibitors, ARBs and direct renin inhibitors
Thiazide and thiazide-like diuretics
Calcium channel blockers
Adrenergic antagonists: Beta blockers
cGMP mediated smooth muscle vasodilators
Class I antiarrhythmics: Sodium channel blockers
Class II antiarrhythmics: Beta blockers
Class III antiarrhythmics: Potassium channel blockers
Class IV antiarrhythmics: Calcium channel blockers and others
Lipid-lowering medications: Statins
Lipid-lowering medications: Fibrates
Miscellaneous lipid-lowering medications
Positive inotropic medications
Antihistamines for allergies
Acid reducing medications
Glucocorticoids
Atrial flutter
Atrial fibrillation
Premature atrial contraction
Atrioventricular nodal reentrant tachycardia (AVNRT)
Wolff-Parkinson-White syndrome
Ventricular tachycardia
Brugada syndrome
Premature ventricular contraction
Ventricular fibrillation
Atrioventricular block
Bundle branch block
Pulseless electrical activity
Truncus arteriosus
Transposition of the great vessels
Total anomalous pulmonary venous return
Tetralogy of Fallot
Hypoplastic left heart syndrome
Patent ductus arteriosus
Ventricular septal defect
Coarctation of the aorta
Atrial septal defect
Aortic dissection
Aneurysms
Tricuspid valve disease
Pulmonary valve disease
Mitral valve disease
Aortic valve disease
Dilated cardiomyopathy
Restrictive cardiomyopathy
Hypertrophic cardiomyopathy
Heart failure
Cor pulmonale
Endocarditis
Myocarditis
Rheumatic heart disease
Choanal atresia
Laryngomalacia
Allergic rhinitis
Nasal polyps
Upper respiratory tract infection
Sinusitis
Laryngitis
Retropharyngeal and peritonsillar abscesses
Bacterial epiglottitis
Nasopharyngeal carcinoma
Tracheoesophageal fistula
Congenital pulmonary airway malformation
Pulmonary hypoplasia
Neonatal respiratory distress syndrome
Transient tachypnea of the newborn
Meconium aspiration syndrome
Apnea of prematurity
Sudden infant death syndrome
Acute respiratory distress syndrome
Decompression sickness
Cyanide poisoning
Methemoglobinemia
Cystic fibrosis
Bronchiectasis
Alpha 1-antitrypsin deficiency
Sarcoidosis
Idiopathic pulmonary fibrosis
Pneumonia
Croup
Bacterial tracheitis
Lung cancer
Pancoast tumor
Superior vena cava syndrome
Pleural effusion
Mesothelioma
Pulmonary edema
Sleep apnea
Arterial disease
Angina pectoris
Stable angina
Unstable angina
Myocardial infarction
Prinzmetal angina
Coronary steal syndrome
Peripheral artery disease
Subclavian steal syndrome
Vasculitis
Behcet's disease
Kawasaki disease
Hypertension
Hypertensive emergency
Renal artery stenosis
Cushing syndrome
Conn syndrome
Pheochromocytoma
Polycystic kidney disease
Hypotension
Orthostatic hypotension
Abetalipoproteinemia
Familial hypercholesterolemia
Hypertriglyceridemia
Hyperlipidemia
Chronic venous insufficiency
Thrombophlebitis
Deep vein thrombosis
Lymphedema
Lymphangioma
Shock
Vascular tumors
Human herpesvirus 8 (Kaposi sarcoma)
Angiosarcomas
Pericarditis and pericardial effusion
Cardiac tamponade
Dressler syndrome
Cardiac tumors
Acyanotic congenital heart defects: Pathology review
Cyanotic congenital heart defects: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Coronary artery disease: Pathology review
Peripheral artery disease: Pathology review
Valvular heart disease: Pathology review
Cardiomyopathies: Pathology review
Heart failure: Pathology review
Supraventricular arrhythmias: Pathology review
Ventricular arrhythmias: Pathology review
Heart blocks: Pathology review
Aortic dissections and aneurysms: Pathology review
Pericardial disease: Pathology review
Endocarditis: Pathology review
Hypertension: Pathology review
Shock: Pathology review
Vasculitis: Pathology review
Cardiac and vascular tumors: Pathology review
Dyslipidemias: Pathology review
Choanal atresia
Laryngomalacia
Allergic rhinitis
Nasal polyps
Upper respiratory tract infection
Sinusitis
Laryngitis
Retropharyngeal and peritonsillar abscesses
Bacterial epiglottitis
Nasopharyngeal carcinoma
Tracheoesophageal fistula
Congenital pulmonary airway malformation
Pulmonary hypoplasia
Neonatal respiratory distress syndrome
Transient tachypnea of the newborn
Meconium aspiration syndrome
Apnea of prematurity
Sudden infant death syndrome
Acute respiratory distress syndrome
Decompression sickness
Cyanide poisoning
Methemoglobinemia
Emphysema
Chronic bronchitis
Asthma
Cystic fibrosis
Bronchiectasis
Alpha 1-antitrypsin deficiency
Restrictive lung diseases
Sarcoidosis
Idiopathic pulmonary fibrosis
Pneumonia
Croup
Bacterial tracheitis
Lung cancer
Pancoast tumor
Superior vena cava syndrome
Pneumothorax
Pleural effusion
Mesothelioma
Pulmonary embolism
Pulmonary edema
Pulmonary hypertension
Sleep apnea
Respiratory distress syndrome: Pathology review
Cystic fibrosis: Pathology review
Pneumonia: Pathology review
Tuberculosis: Pathology review
Deep vein thrombosis and pulmonary embolism: Pathology review
Pleural effusion, pneumothorax, hemothorax and atelectasis: Pathology review
Obstructive lung diseases: Pathology review
Restrictive lung diseases: Pathology review
Apnea, hypoventilation and pulmonary hypertension: Pathology review
Lung cancer and mesothelioma: Pathology review
Cholesterol metabolism
Fats and lipids
Chlamydia pneumoniae
Klebsiella pneumoniae
Pseudomonas aeruginosa
Legionella pneumophila (Legionnaires disease and Pontiac fever)
Bordetella pertussis (Whooping cough)
Mycobacterium tuberculosis (Tuberculosis)
Mycoplasma pneumoniae
Cytomegalovirus
Adenovirus
Rhinovirus
Influenza virus
Respiratory syncytial virus
Human parainfluenza viruses
Coronaviruses
Coccidioidomycosis and paracoccidioidomycosis
Blastomycosis
Histoplasmosis
Pneumocystis jirovecii (Pneumocystis pneumonia)
Aspergillus fumigatus
Cryptococcus neoformans
Cryptosporidium

Assessments

Flashcards

0 / 23 complete

USMLE® Step 1 questions

0 / 1 complete

High Yield Notes

8 pages

Flashcards

ECG basics

0 of 23 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 1 complete

A 55-year-old man is brought to the emergency department with severe midsternal chest pain. The patient reports 2 episodes of non-bloody emesis and diaphoresis since the start of the chest pain half an hour ago. Blood pressure is 110/75 and pulse is 89/min. Physical examination is unremarkable. An electrocardiogram (ECG) is performed based on which a provisional diagnosis of inferior wall myocardial infarction is made. Which of the following patterns of ECG changes are most likely seen in this patient?  

External References

First Aid

2024

2023

2022

2021

Electrocardiogram (ECG)

with pulmonary embolism p. 691

Electrocardiograms (ECGs) p. 310

acute pericarditis on p. 318

cardiac tamponade on p. 477

low-voltage p. 315, 477

MI diagnosis with p. 313

tracings of p. 298

Heart

electrocardiograms p. 310

Transcript

Watch video only

Content Reviewers

Contributors

An electrocardiogram is also known as an ECG; the Dutch and German version of the word, elektrokardiogram, is shortened to EKG. It is a tool used to visualize, or “gram,” the electricity, or “electro,” that flows through the heart, or “cardio.” Specifically, a 12-lead ECG tracing shows how the depolarization wave, which is a wave of positive charge, moves during each heartbeat, by providing the perspectives of different sets of electrodes. This particular set of electrodes is called lead II; one electrode is placed on the right arm and the other on the left leg. Essentially, when the wave’s moving toward the left leg electrode, you get a positive deflection. This big, positive deflection corresponds to the wave moving down the septum.

To understand the basics, let’s start with an example of how we can look at the heart with only one pair of electrodes: a positive and a negative one. These electrodes detect the charge on the outside of the cell. Remember, at rest, cells are negatively charged relative to the slightly positive outside environment; let’s make these cells red. When they depolarize, the cells become positively charged, and leave a slightly negative charge in the outside environment; let’s make these cells green. Now, if we freeze this “wave of depolarization” as it’s moving through the cells, half of the cells are negative, or depolarized, and half are positive and resting; therefore, there’s a difference of charge across this set of cells. You can think of the charge difference as being a dipole, because there are two electrical poles. We can draw this dipole out as an arrow, or vector, pointing towards the positive charge. Remember, the electrodes detect charge on the outside of the cell, so this points toward where the positive charge is, outside.

Now, if there’s a dipole vector pointing toward the positive electrode, then the ECG tracing shows it as a positive deflection; the bigger the dipole is, the bigger the deflection is. If we unpause this, then everything becomes depolarized. Since there’s no difference in charge, there’s no dipole, and thus no deflection. Moments later, a wave of repolarization goes through, and the cells become negative once again. Pausing halfway through again, now the vector dipole goes in the opposite direction, and faces the negative electrode; this means that there will be a negative ECG tracing. Again, the bigger the dipole is, the bigger the negative deflection is. Even though it’d be nice if the depolarization wave lined up perfectly with the electrodes, usually that’s not the case. So, we simply look at the vector component that is parallel to that electrode. For example, let’s say that the depolarization happened this way, at an angle; then, we’d simply break the vector into two parts. The one we care about is the one that’s going towards the positive electrode, which causes a deflection, even though it’s a slightly smaller deflection than previously. In other words, the size of the deflection on the ECG tracing always corresponds to the magnitude, or size, of the dipole in the direction of the electrode. The perpendicular component isn’t pointing at the electrodes, so it doesn’t cause any deflection. In fact, if there’s a depolarization wave that goes straight up, perpendicular to the positive and negative electrodes, there would be no deflection!

In a standard ECG, there are 10 electrodes: four limb electrodes, with one each on the left arm, right arm, left leg, and right leg; and six precordial electrodes, V1 through V6, that wrap around the chest. The right leg electrode is usually used as a neutral lead. The heart is a three-dimensional organ, so V1 through V6 line up in the transverse, or horizontal, plane of the heart. Each electrode is set up to detect any wave of positive charge coming towards it. These are collectively called the chest leads.

Sources

  1. "Medical Physiology" Elsevier (2016)
  2. "Physiology" Elsevier (2017)
  3. "Human Anatomy & Physiology" Pearson (2017)
  4. "Principles of Anatomy and Physiology" Wiley (2014)
  5. "Screening for Cardiovascular Disease Risk With Electrocardiography" JAMA (2018)
  6. "Screening for Coronary Heart Disease With Electrocardiography: U.S. Preventive Services Task Force Recommendation Statement" Annals of Internal Medicine (2012)
  7. "Activation of the Interventricular Septum" Circulation Research (1955)