ECG cardiac hypertrophy and enlargement

39,763views

test

00:00 / 00:00

ECG cardiac hypertrophy and enlargement

Back to the Basic Sciences

Acutely ill patient

Focused chief complaint

Anatomy clinical correlates: Anterior and posterior abdominal wall
Anatomy clinical correlates: Inguinal region
Anatomy clinical correlates: Other abdominal organs
Anatomy clinical correlates: Peritoneum and diaphragm
Anatomy clinical correlates: Viscera of the gastrointestinal tract
Appendicitis: Pathology review
Diverticular disease: Pathology review
Gallbladder disorders: Pathology review
GERD, peptic ulcers, gastritis, and stomach cancer: Pathology review
Inflammatory bowel disease: Pathology review
Pancreatitis: Pathology review
Anatomy clinical correlates: Anterior blood supply to the brain
Anatomy clinical correlates: Cerebellum and brainstem
Anatomy clinical correlates: Cerebral hemispheres
Anatomy clinical correlates: Posterior blood supply to the brain
Amnesia, dissociative disorders and delirium: Pathology review
Central nervous system infections: Pathology review
Cerebral vascular disease: Pathology review
Dementia: Pathology review
Drug misuse, intoxication and withdrawal: Alcohol: Pathology review
Drug misuse, intoxication and withdrawal: Hallucinogens: Pathology review
Drug misuse, intoxication and withdrawal: Other depressants: Pathology review
Drug misuse, intoxication and withdrawal: Stimulants: Pathology review
Mood disorders: Pathology review
Schizophrenia spectrum disorders: Pathology review
Seizures: Pathology review
Traumatic brain injury: Pathology review
Anatomy clinical correlates: Breast
Anatomy clinical correlates: Heart
Anatomy clinical correlates: Mediastinum
Anatomy clinical correlates: Pleura and lungs
Anatomy clinical correlates: Thoracic wall
Aortic dissections and aneurysms: Pathology review
Coronary artery disease: Pathology review
Deep vein thrombosis and pulmonary embolism: Pathology review
GERD, peptic ulcers, gastritis, and stomach cancer: Pathology review
Pleural effusion, pneumothorax, hemothorax and atelectasis: Pathology review
Diabetes mellitus: Pathology review
Electrolyte disturbances: Pathology review
Hyperthyroidism: Pathology review
Anatomy clinical correlates: Viscera of the gastrointestinal tract
Gastrointestinal bleeding: Pathology review
Anatomy clinical correlates: Bones, fascia and muscles of the neck
Anatomy clinical correlates: Skull, face and scalp
Anatomy clinical correlates: Temporal regions, oral cavity and nose
Anatomy clinical correlates: Trigeminal nerve (CN V)
Anatomy clinical correlates: Vessels, nerves and lymphatics of the neck
Headaches: Pathology review
Anatomy clinical correlates: Anterior blood supply to the brain
Anatomy clinical correlates: Cerebellum and brainstem
Anatomy clinical correlates: Cerebral hemispheres
Anatomy clinical correlates: Posterior blood supply to the brain
Cerebral vascular disease: Pathology review
Anatomy clinical correlates: Female pelvis and perineum
Cervical cancer: Pathology review
Complications during pregnancy: Pathology review
Ovarian cysts and tumors: Pathology review
Sexually transmitted infections: Vaginitis and cervicitis: Pathology review
Urinary tract infections: Pathology review
Uterine disorders: Pathology review
Vaginal and vulvar disorders: Pathology review
Anatomy clinical correlates: Heart
Anatomy clinical correlates: Mediastinum
Anatomy clinical correlates: Pleura and lungs
Anatomy clinical correlates: Thoracic wall
Apnea, hypoventilation and pulmonary hypertension: Pathology review
Deep vein thrombosis and pulmonary embolism: Pathology review
Heart failure: Pathology review
Lung cancer and mesothelioma: Pathology review
Obstructive lung diseases: Pathology review
Pleural effusion, pneumothorax, hemothorax and atelectasis: Pathology review
Pneumonia: Pathology review
Restrictive lung diseases: Pathology review
Tuberculosis: Pathology review
Drug misuse, intoxication and withdrawal: Alcohol: Pathology review
Drug misuse, intoxication and withdrawal: Hallucinogens: Pathology review
Drug misuse, intoxication and withdrawal: Other depressants: Pathology review
Drug misuse, intoxication and withdrawal: Stimulants: Pathology review
Environmental and chemical toxicities: Pathology review
Medication overdoses and toxicities: Pathology review

Assessments

Flashcards

0 / 11 complete

USMLE® Step 1 questions

0 / 1 complete

High Yield Notes

8 pages

Flashcards

ECG cardiac hypertrophy and enlargement

0 of 11 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 1 complete

A 75-year-old man comes to the clinic for a routine visit. The patient currently has no complaints and came for medication refills. He has a past medical history of hypertension diagnosed 30 years ago. He has not been using his medications in the past several years but recently started taking them as prescribed after a family member died of a heart attack. The patient’s medications include amlodipine and losartan. Cardiac auscultation reveals an abnormal heart sound just before S1. Which of the following electrocardiographic findings are most likely to be seen in this patient?  

Transcript

Watch video only

An electrocardiogram - an ECG - or the dutch and german version of the word - elektrokardiogram or EKG, is a tool used to visualize “gram” the electricity “electro” that flows through the heart “cardio”.

An ECG tracing specifically shows how the depolarization wave moves during each heartbeat - which is a wave of positive charge - looks from the perspective of different sets of electrodes.

This particular set of electrodes is called lead II, with one electrode on the right arm and the other on the left leg, so essentially when the wave’s moving toward the left leg electrode, you get a positive deflection, like this big positive deflection correspond to the wave moving down the septum.

There are lots of things to look for when reading an ECG, one of them includes figuring out if part of the heart has undergone hypertrophy or enlargement.

Hypertrophy means that a heart’s muscular wall has increased in thickness while dilation refers to an increase in the volume of the chamber.

The term enlargement is generally used when both hypertrophy and dilation occur together, and this is what typically happens in the atria.

In contrast, the ventricles often undergo hypertrophy without dilation. An ECG can show evidence of hypertrophy and enlargement in all of the heart’s four chambers - so let’s go through them one by one.

Normally, atrial depolarization produces a pretty normal looking - symmetric P wave. In right atrial enlargement, all of that extra right atrial muscle tissue results in a large P wave in leads V1 and V2, often over 1.5 mm, as well as in the inferior leads - leads II, III, and aVF, often over 2.5 mm.

One reason why right atrial enlargement develops is that there can be a stenotic or narrowed tricuspid valve that makes it more difficult for the atria to eject blood into the ventricles, and in response, the right atrium enlarges.

In left atrial enlargement, the left atrium has extra muscle tissue and that results in a P wave with two peaks in lead II, with the entire thing stretching out over 110 ms, and a gap of over 40 ms separating the two peaks.

In lead V1 the P wave is biphasic, meaning that it looks like a hill with a valley alongside it. The negative portion is usually 1 mm deep and lasts for more than 40 ms.

Left atrial enlargement also develops from a stenotic valve, but this time it’s the mitral valve that causes the left atrium to get bigger.

Normally, the QRS complex is mostly negative in lead V1 because the large left ventricle, which carries the greatest amount of muscle tissue, is oriented down and away from this electrode.

Summary

Myocardial hypertrophy refers to the increase in the thickness of the heart's muscular wall, and myocardial enlargement refers to hypertrophy associated with the dilation of the cardiac chambers, typically the atria. Both myocardial hypertrophy and enlargement present specific findings on ECG and can help to identify which chamber of the heart that's involved. For example, the right atrial enlargement shows a big P wave in lead II and V1, whereas the right ventricular hypertrophy shows a big R wave in V1 and a big S wave in V5 and V6.

Sources

  1. "Medical Physiology" Elsevier (2016)
  2. "Physiology" Elsevier (2017)
  3. "Human Anatomy & Physiology" Pearson (2017)
  4. "Principles of Anatomy and Physiology" Wiley (2014)
  5. "Mechanisms and Models in Heart Failure" Circulation (2005)
  6. "Control Mechanisms for Physiological Hypertrophy of Pregnancy" Circulation (1996)