Electrical conduction in the heart

51,043views

00:00 / 00:00

Electrical conduction in the heart

PCV

PCV

Lung volumes and capacities
Asthma
Bronchodilators: Beta 2-agonists and muscarinic antagonists
Bronchodilators: Leukotriene antagonists and methylxanthines
Pulmonary corticosteroids and mast cell inhibitors
Emphysema
Pneumothorax
Chronic bronchitis
Diffusion-limited and perfusion-limited gas exchange
Obstructive lung diseases: Pathology review
Chronic obstructive pulmonary disease (COPD): Clinical
Ventilation-perfusion ratios and V/Q mismatch
Reading a chest X-ray
Regulation of pulmonary blood flow
Restrictive lung diseases
Compliance of lungs and chest wall
Gas exchange in the lungs, blood and tissues
Anatomy of the lungs and tracheobronchial tree
Diffuse parenchymal lung disease: Clinical
Combined pressure-volume curves for the lung and chest wall
Pulmonary hypertension
Pulmonary shunts
Pulmonary embolism
Tuberculosis: Pathology review
Long QT syndrome and Torsade de pointes
Cardiovascular system anatomy and physiology
Lymphatic system anatomy and physiology
Coronary circulation
Blood pressure, blood flow, and resistance
Pressures in the cardiovascular system
Laminar flow and Reynolds number
Resistance to blood flow
Compliance of blood vessels
Control of blood flow circulation
Microcirculation and Starling forces
Measuring cardiac output (Fick principle)
Stroke volume, ejection fraction, and cardiac output
Cardiac contractility
Frank-Starling relationship
Cardiac preload
Cardiac afterload
Law of Laplace
Cardiac and vascular function curves
Altering cardiac and vascular function curves
Cardiac work
Cardiac cycle
Pressure-volume loops
Changes in pressure-volume loops
Physiological changes during exercise
Cardiovascular changes during hemorrhage
Cardiovascular changes during postural change
Normal heart sounds
Abnormal heart sounds
Action potentials in myocytes
Action potentials in pacemaker cells
Excitability and refractory periods
Cardiac excitation-contraction coupling
Electrical conduction in the heart
Cardiac conduction velocity
ECG basics
ECG normal sinus rhythm
ECG intervals
ECG QRS transition
ECG axis
ECG rate and rhythm
ECG cardiac infarction and ischemia
ECG cardiac hypertrophy and enlargement
Baroreceptors
Chemoreceptors
Renin-angiotensin-aldosterone system
ACE inhibitors, ARBs and direct renin inhibitors
Thiazide and thiazide-like diuretics
Calcium channel blockers
Adrenergic antagonists: Beta blockers
cGMP mediated smooth muscle vasodilators
Class I antiarrhythmics: Sodium channel blockers
Class II antiarrhythmics: Beta blockers
Class III antiarrhythmics: Potassium channel blockers
Class IV antiarrhythmics: Calcium channel blockers and others
Lipid-lowering medications: Statins
Lipid-lowering medications: Fibrates
Miscellaneous lipid-lowering medications
Positive inotropic medications
Antihistamines for allergies
Acid reducing medications
Glucocorticoids
Atrial flutter
Atrial fibrillation
Premature atrial contraction
Atrioventricular nodal reentrant tachycardia (AVNRT)
Wolff-Parkinson-White syndrome
Ventricular tachycardia
Brugada syndrome
Premature ventricular contraction
Ventricular fibrillation
Atrioventricular block
Bundle branch block
Pulseless electrical activity
Truncus arteriosus
Transposition of the great vessels
Total anomalous pulmonary venous return
Tetralogy of Fallot
Hypoplastic left heart syndrome
Patent ductus arteriosus
Ventricular septal defect
Coarctation of the aorta
Atrial septal defect
Aortic dissection
Aneurysms
Tricuspid valve disease
Pulmonary valve disease
Mitral valve disease
Aortic valve disease
Dilated cardiomyopathy
Restrictive cardiomyopathy
Hypertrophic cardiomyopathy
Heart failure
Cor pulmonale
Endocarditis
Myocarditis
Rheumatic heart disease
Choanal atresia
Laryngomalacia
Allergic rhinitis
Nasal polyps
Upper respiratory tract infection
Sinusitis
Laryngitis
Retropharyngeal and peritonsillar abscesses
Bacterial epiglottitis
Nasopharyngeal carcinoma
Tracheoesophageal fistula
Congenital pulmonary airway malformation
Pulmonary hypoplasia
Neonatal respiratory distress syndrome
Transient tachypnea of the newborn
Meconium aspiration syndrome
Apnea of prematurity
Sudden infant death syndrome
Acute respiratory distress syndrome
Decompression sickness
Cyanide poisoning
Methemoglobinemia
Cystic fibrosis
Bronchiectasis
Alpha 1-antitrypsin deficiency
Sarcoidosis
Idiopathic pulmonary fibrosis
Pneumonia
Croup
Bacterial tracheitis
Lung cancer
Pancoast tumor
Superior vena cava syndrome
Pleural effusion
Mesothelioma
Pulmonary edema
Sleep apnea
Arterial disease
Angina pectoris
Stable angina
Unstable angina
Myocardial infarction
Prinzmetal angina
Coronary steal syndrome
Peripheral artery disease
Subclavian steal syndrome
Vasculitis
Behcet's disease
Kawasaki disease
Hypertension
Hypertensive emergency
Renal artery stenosis
Cushing syndrome
Conn syndrome
Pheochromocytoma
Polycystic kidney disease
Hypotension
Orthostatic hypotension
Abetalipoproteinemia
Familial hypercholesterolemia
Hypertriglyceridemia
Hyperlipidemia
Chronic venous insufficiency
Thrombophlebitis
Deep vein thrombosis
Lymphedema
Lymphangioma
Shock
Vascular tumors
Human herpesvirus 8 (Kaposi sarcoma)
Angiosarcomas
Pericarditis and pericardial effusion
Cardiac tamponade
Dressler syndrome
Cardiac tumors
Acyanotic congenital heart defects: Pathology review
Cyanotic congenital heart defects: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Coronary artery disease: Pathology review
Peripheral artery disease: Pathology review
Valvular heart disease: Pathology review
Cardiomyopathies: Pathology review
Heart failure: Pathology review
Supraventricular arrhythmias: Pathology review
Ventricular arrhythmias: Pathology review
Heart blocks: Pathology review
Aortic dissections and aneurysms: Pathology review
Pericardial disease: Pathology review
Endocarditis: Pathology review
Hypertension: Pathology review
Shock: Pathology review
Vasculitis: Pathology review
Cardiac and vascular tumors: Pathology review
Dyslipidemias: Pathology review
Choanal atresia
Laryngomalacia
Allergic rhinitis
Nasal polyps
Upper respiratory tract infection
Sinusitis
Laryngitis
Retropharyngeal and peritonsillar abscesses
Bacterial epiglottitis
Nasopharyngeal carcinoma
Tracheoesophageal fistula
Congenital pulmonary airway malformation
Pulmonary hypoplasia
Neonatal respiratory distress syndrome
Transient tachypnea of the newborn
Meconium aspiration syndrome
Apnea of prematurity
Sudden infant death syndrome
Acute respiratory distress syndrome
Decompression sickness
Cyanide poisoning
Methemoglobinemia
Emphysema
Chronic bronchitis
Asthma
Cystic fibrosis
Bronchiectasis
Alpha 1-antitrypsin deficiency
Restrictive lung diseases
Sarcoidosis
Idiopathic pulmonary fibrosis
Pneumonia
Croup
Bacterial tracheitis
Lung cancer
Pancoast tumor
Superior vena cava syndrome
Pneumothorax
Pleural effusion
Mesothelioma
Pulmonary embolism
Pulmonary edema
Pulmonary hypertension
Sleep apnea
Respiratory distress syndrome: Pathology review
Cystic fibrosis: Pathology review
Pneumonia: Pathology review
Tuberculosis: Pathology review
Deep vein thrombosis and pulmonary embolism: Pathology review
Pleural effusion, pneumothorax, hemothorax and atelectasis: Pathology review
Obstructive lung diseases: Pathology review
Restrictive lung diseases: Pathology review
Apnea, hypoventilation and pulmonary hypertension: Pathology review
Lung cancer and mesothelioma: Pathology review
Cholesterol metabolism
Fats and lipids
Chlamydia pneumoniae
Klebsiella pneumoniae
Pseudomonas aeruginosa
Legionella pneumophila (Legionnaires disease and Pontiac fever)
Bordetella pertussis (Whooping cough)
Mycobacterium tuberculosis (Tuberculosis)
Mycoplasma pneumoniae
Cytomegalovirus
Adenovirus
Rhinovirus
Influenza virus
Respiratory syncytial virus
Human parainfluenza viruses
Coronaviruses
Coccidioidomycosis and paracoccidioidomycosis
Blastomycosis
Histoplasmosis
Pneumocystis jirovecii (Pneumocystis pneumonia)
Aspergillus fumigatus
Cryptococcus neoformans
Cryptosporidium

Assessments

Flashcards

0 / 14 complete

USMLE® Step 1 questions

0 / 2 complete

CME Credits

0.5 / 0.5 complete

High Yield Notes

7 pages

Flashcards

Electrical conduction in the heart

0 of 14 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 2 complete

A disease of the heart in elderly patients is being studied by a group of researchers. In the study, it was discovered that the sinoatrial (SA) cells in the SA node become fibrosed and are unable to generate action potentials. Which of the following is expected to happen as a result of this disease?  

Transcript

Watch video only

So, electrical conduction in the heart refers to the electrical signals that go from cell to cell in the heart. This happens in the form of action potentials, which get sent out by the pacemaker cells in the heart.

The pacemaker cells, also called conducting cells, are a relatively tiny group -- only about 1% of the heart cells -- but they’re a pretty influential minority.

They’re special ability is that they are autorhythmic, which means that they are able to continually generate new action potentials that go out to the rest of the heart -- the other 99%.

This is different from how it works in skeletal muscle cells, which get their action potential signals directly from neurons.

The cells that receive the cardiac action potential from the pacemaker cells are called myocytes - they make up the myocardium, which is the muscular middle layer of the heart.

Myocytes are also called contractile cells because they contract and that’s how the heart pumps blood.

Action potentials are initiated by depolarization, which is the opposite of polarization. In this case polarization is when there are more positive ions outside the cell than inside.

This difference in charge is called the membrane potential and is negative since there are more positive ions outside the cell.

So, depolarization is when the membrane potential gets smaller making a cell slightly more positive than it normally would be - imagine a negative, gloomy cell enjoying a moment of joy.

If one cell after another depolarizes, then there’s a depolarization wave which is just like a crowd of people doing the wave at a football stadium.

So, there’s a group of pacemaker cells in the sinoatrial node or SA node, which is a small sinus or cavity tucked up into the right atrium. During each heartbeat, one pacemaker cell out of the group will automatically depolarize first.

In fact, each heart beat might be led by a different cell in the group, but eventually at least one of them will fire because they’re all autorhythmic, meaning that every pacemaker cell has the ability to self-generate a new action potential, given enough time.

So as a group, the pacemaker cells of the SA node act like a drill sergeant that gives orders to the rest of the heart. They decide when the heart contracts and when it relaxes, so they set the heart rate.

The depolarization wave that comes out of the SA node moves really fast through pacemaker cells throughout the heart, and moves more slowly through atrial and ventricular myocytes.

Some pacemakers lie along atrial internodal tracts, also called Bachmann's bundle, which connect the SA node to spots in the right and left atria, so that the depolarization wave can quickly reach atrial myocytes in both atria.

When the atrial myocytes get depolarized, they contract, pushing blood from the atria into the ventricles.

While this is happening, the depolarization wave also travels from the SA node through pacemaker cells to the atrioventricular or AV node. Conduction velocity slows way down in the AV node for two reasons.

First, the AV nodal cells have very small diameters which increases resistance to electrical flow, and second, the AV nodal cells use the relatively slower opening calcium ion channels rather than the faster opening sodium ion channels.

Summary

The heart is a muscular organ that contracts and relaxes to pump blood throughout the body. Electrical signals originate in the sinoatrial (SA) node in the right atrium. The depolarization wave from the SA node travels to the atrioventricular (AV) node and the left atria. From the AV node, the depolarization wave travels through the bundle of His and the Purkinje fibres, from where it spreads to the rest of the heart's muscle. This impulse triggers the heart muscles to contract and pump blood.