Erythropoietin

20,811views

00:00 / 00:00

High Yield Notes

14 pages

Flashcards

Erythropoietin

of complete

Questions

USMLE® Step 1 style questions USMLE

of complete

A 26-year-old man who previously lived at sea level moves to a new city in the mountains. Which of the following changes are expected to be seen after 6 months of living at a higher elevation?  

Memory Anchors and Partner Content

External References

First Aid

2024

2023

2022

2021

Chronic kidney disease

erythropoietin in p. 607

Erythrocytes p. 413

erythropoietin and p. 607

Erythropoietin p. NaN

high altitude p. 686

with pheochromacytoma p. 343

polycythemia and p. 219, 725

release of p. 607

in renal failure p. 621

signaling pathways for p. 351

Erythropoietin (EPO)

anemia of chronic disease p. 427

aplastic anemia p. 427

with polycythemias p. 438

Hypoxia

erythropoietin and p. 607

Transcript

Watch video only

With erythropoietin, ‘-poietin’ means ‘to make’ and ‘erythro-’ refers to red blood cells, so erythropoietin is a hormone that stimulates the production of erythrocytes or red blood cells in the bone marrow. Erythropoietin, or EPO, is produced in the kidneys, and to a lesser extent in the liver, and travels through the blood to the bone marrow where it stimulates immature cells to transform into mature red blood cells.

Every cell in the body uses oxygen for cellular respiration. As we breathe, oxygen diffuses into the bloodstream where it binds hemoglobin within the red blood cells and gets carried off to various parts of the body. Red blood cells live for about 120 days, so there is a constant need to produce new red blood cells.

Now, in the bone marrow, there are proerythroblasts, which are primitive or immature red blood cells. The kidneys produce a constant level of erythropoietin, which gets released into the blood and makes its way to the bone marrow, where it binds to erythropoietin receptors on the immature red blood cells and causes them to erythrocytes, or mature into red blood cells, usually this production of erythropoietin is constant, so the production of mature red blood cells is constant. If there’s ever decreased oxygen delivery to the tissues, then one thing the body can do is ramp up production of oxygen delivery vehicles, in other words red blood cells. In this situation, the kidney cells ramp up production of erythropoietin, therefore ramping up production of mature red blood cells. Interestingly, erythropoietin prevents immature red blood cells from killing themselves by apoptosis, meaning that without erythropoietin, developing red blood cells die via apoptosis.

Fundamentally, decreased oxygen delivery to the tissues can be due to a decrease in blood flow or a decrease in blood oxygen content. If there’s a decrease in blood flow, then increasing the number of red blood cells is not effective, however, if there’s a decreased oxygen content, then increasing the number of red blood cells is effective and will help with oxygen delivery. 

Summary

Erythropoietin (EPO) is a hormone that regulates the production of red blood cells. EPO is produced by kidney cells, and can be deficient in individuals with chronic kidney diseases, resulting in reduced production of red blood cells, thus anemia.

EPO is made in response to low oxygen levels in the tissues. It signals the bone marrow to produce more red blood cells, which helps to increase oxygen delivery to tissues. EPO is also used as a doping agent in endurance sports because it can improve performance by increasing the amount of oxygen that is delivered to muscles. EPO doping has been reported to have negative health effects, including an increased risk of heart attack and stroke.

Sources

  1. "Medical Physiology" Elsevier (2016)
  2. "Physiology" Elsevier (2017)
  3. "Human Anatomy & Physiology" Pearson (2018)
  4. "Principles of Anatomy and Physiology" Wiley (2014)
  5. "Erythropoietin" BMJ (1964)
  6. "Erythropoietin" BMJ (1964)