Skip to content

Erythropoietin

Assessments
Erythropoietin

Flashcards

0 / 7 complete

Questions

0 / 1 complete
High Yield Notes
14 pages
Flashcards

Erythropoietin

7 flashcards
Questions

USMLE® Step 1 style questions USMLE

1 questions
Preview

A 26-year-old man who previously lived at sea level moves to a new city in the mountains. Which of the following changes are expected to be seen after 6 months of living at a higher elevation?  

Memory Anchors and Partner Content
External References
Transcript

Content Reviewers:

Rishi Desai, MD, MPH

With erythropoietin, ‘-poietin’ means ‘to make’ and ‘erythro-’ refers to red blood cells, so erythropoietin is a hormone that stimulates the production of erythrocytes or red blood cells in the bone marrow. Erythropoietin, or EPO, is produced in the kidneys, and to a lesser extent in the liver, and travels through the blood to the bone marrow where it stimulates immature cells to transform into mature red blood cells.

Every cell in the body uses oxygen for cellular respiration. As we breathe, oxygen diffuses into the bloodstream where it binds hemoglobin within the red blood cells and gets carried off to various parts of the body. Red blood cells live for about 120 days, so there is a constant need to produce new red blood cells.

Now, in the bone marrow, there are proerythroblasts, which are primitive or immature red blood cells. The kidneys produce a constant level of erythropoietin, which gets released into the blood and makes its way to the bone marrow, where it binds to erythropoietin receptors on the immature red blood cells and causes them to erythrocytes, or mature into red blood cells, usually this production of erythropoietin is constant, so the production of mature red blood cells is constant. If there’s ever decreased oxygen delivery to the tissues, then one thing the body can do is ramp up production of oxygen delivery vehicles, in other words red blood cells. In this situation, the kidney cells ramp up production of erythropoietin, therefore ramping up production of mature red blood cells. Interestingly, erythropoietin prevents immature red blood cells from killing themselves by apoptosis, meaning that without erythropoietin, developing red blood cells die via apoptosis.

Fundamentally, decreased oxygen delivery to the tissues can be due to a decrease in blood flow or a decrease in blood oxygen content. If there’s a decrease in blood flow, then increasing the number of red blood cells is not effective, however, if there’s a decreased oxygen content, then increasing the number of red blood cells is effective and will help with oxygen delivery. 

Summary

Erythropoietin (EPO) is a hormone that regulates the production of red blood cells. EPO is produced by kidney cells, and can be deficient in individuals with chronic kidney diseases, resulting in reduced production of red blood cells, thus anemia.

EPO is made in response to low oxygen levels in the tissues. It signals the bone marrow to produce more red blood cells, which helps to increase oxygen delivery to tissues. EPO is also used as a doping agent in endurance sports because it can improve performance by increasing the amount of oxygen that is delivered to muscles. EPO doping has been reported to have negative health effects, including an increased risk of heart attack and stroke.

Sources
  1. "Medical Physiology" Elsevier (2016)
  2. "Physiology" Elsevier (2017)
  3. "Human Anatomy & Physiology" Pearson (2018)
  4. "Principles of Anatomy and Physiology" Wiley (2014)
  5. "Erythropoietin" BMJ (1964)
  6. "Erythropoietin" BMJ (1964)