00:00 / 00:00
Nervous system
Amyotrophic lateral sclerosis
Neurofibromatosis
Sturge-Weber syndrome
Tuberous sclerosis
von Hippel-Lindau disease
Brain herniation
Broca aphasia
Kluver-Bucy syndrome
Wernicke aphasia
Wernicke-Korsakoff syndrome
Acoustic neuroma (schwannoma)
Adult brain tumors
Pediatric brain tumors
Pituitary adenoma
Ischemic stroke
Transient ischemic attack
Brain abscess
Cavernous sinus thrombosis
Creutzfeldt-Jakob disease
Encephalitis
Epidural abscess
Meningitis
Neonatal meningitis
Aqueductal stenosis
Cerebral palsy
Chiari malformation
Dandy-Walker malformation
Septo-optic dysplasia
Spina bifida
Spinocerebellar ataxia (NORD)
Syringomyelia
Tethered spinal cord syndrome
Alzheimer disease
Creutzfeldt-Jakob disease
Delirium
Frontotemporal dementia
Lewy body dementia
Normal pressure hydrocephalus
Vascular dementia
Acute disseminated encephalomyelitis
Central pontine myelinolysis
JC virus (Progressive multifocal leukoencephalopathy)
Multiple sclerosis
Transverse myelitis
Cavernous sinus thrombosis
Cluster headache
Idiopathic intracranial hypertension
Migraine
Tension headache
Trigeminal neuralgia
Arteriovenous malformation
Epidural hematoma
Intracerebral hemorrhage
Saccular aneurysm
Subarachnoid hemorrhage
Subdural hematoma
Essential tremor
Huntington disease
Opsoclonus myoclonus syndrome (NORD)
Parkinson disease
Restless legs syndrome
Torticollis
Early infantile epileptic encephalopathy (NORD)
Epilepsy
Febrile seizure
Brown-Sequard Syndrome
Cauda equina syndrome
Friedreich ataxia
Neurogenic bladder
Syringomyelia
Treponema pallidum (Syphilis)
Vitamin B12 deficiency
Concussion and traumatic brain injury
Poliovirus
Spinal muscular atrophy
Charcot-Marie-Tooth disease
Guillain-Barre syndrome
Bell palsy
Trigeminal neuralgia
Carpal tunnel syndrome
Erb-Duchenne palsy
Klumpke paralysis
Sciatica
Thoracic outlet syndrome
Ulnar claw
Winged scapula
Lambert-Eaton myasthenic syndrome
Myasthenia gravis
Adult brain tumors: Pathology review
Central nervous system infections: Pathology review
Cerebral vascular disease: Pathology review
Congenital neurological disorders: Pathology review
Dementia: Pathology review
Demyelinating disorders: Pathology review
Headaches: Pathology review
Movement disorders: Pathology review
Neurocutaneous disorders: Pathology review
Neuromuscular junction disorders: Pathology review
Pediatric brain tumors: Pathology review
Seizures: Pathology review
Spinal cord disorders: Pathology review
Traumatic brain injury: Pathology review
Friedreich ataxia
0 / 8 complete
0 / 2 complete
of complete
of complete
2022
2021
2020
2019
2018
2017
2016
Friedreich ataxia p. 549
Friedreich ataxia p. 549
Friedreich ataxia as p. 549
chromosome association p. 62
hypertrophic cardiomyopathy p. 317
inheritance of p. 60
mechanism of p. 60
Friedreich ataxia p. 549
Friedreich ataxia p. 549
Friedreich ataxia p. 549
Friedreich ataxia p. 549
Friedreich’s ataxia is a disorder where there is impaired mitochondrial function that results in damage to various organ systems. In particular, the nervous system gets damaged which causes ataxia, where the muscles cannot be moved in a coordinated way. The disorder also affects other organs like the heart and pancreas. The disease gets its name from the German physician Nikolaus Friedreich who first described the disease over 150 years ago.
So, normally on chromosome 9, there’s a gene called the FXN gene that encodes a mitochondrial protein called frataxin. The normal amount of frataxin varies by tissue, with some tissues like the nervous system, pancreas, and heart, containing lots of it. Frataxin helps put together cofactors called iron-sulfur clusters. It is a combination of iron and sulfur that form part of enzymes with many functions such as electron transfer, a key part of mitochondrial ATP production.
Friedreich’s ataxia is caused by a mutation in the FXN gene where there is an abnormal repetition of a GAA sequence within that gene. This is called a triplet repeat, or trinucleotide repeat, which means that a group of three DNA nucleotides is repeated multiple times in a row, in this case guanine, adenine, and adenine. Normally, the GAA sequence is repeated 7 to 34 times within the FXN gene. But, in Friedreich’s ataxia there is repeat expansion where there are 100 to 1700 times as many copies, with most individuals having repeats ranging from 600 to 1200 times.
Now, Friedreich’s ataxia is inherited as an autosomal recessive condition. It’s passed on by parents who are “carriers” because they have one expanded FXN gene and one normal FXN gene, but don’t have any symptoms of Friedreich ataxia. They end up passing on their expanded FXN genes to their kid. Inheriting both copies of the FXN gene with an expanded GAA repeat is the most common way to get Friedreich’s ataxia.
The repeat expansion causes gene silencing which is when the FXN gene is not transcribed normally and very little frataxin protein is made. With low levels of frataxin, the mitochondria are unable to efficiently incorporate iron into iron-sulfur clusters and as a result, there is lower mitochondrial ATP production, so there’s less energy available for the cell. Furthermore, iron accumulates inside the mitochondria which reacts with oxygen to create unstable oxygen radicals. Over time these free radicals damage DNA and proteins in the cells in a process called oxidative damage. Then, this energy deficiency and oxidative damage result in dysfunction and death of cells that are highly dependent on mitochondrial function such as neurons, cardiomyocytes and pancreatic beta cells. The loss of neurons leads to ataxia. In the heart, there is abnormal thickening of the ventricles, a condition called hypertrophic cardiomyopathy, which is the most common cause of death in people with Friedreich’s ataxia.
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.