Friedreich ataxia

147,374views

00:00 / 00:00

Videos

Notes

Friedreich ataxia

Genetics

Population genetics

Mendelian genetics and punnett squares

Hardy-Weinberg equilibrium

Inheritance patterns

Independent assortment of genes and linkage

Evolution and natural selection

Genetic disorders

Down syndrome (Trisomy 21)

Edwards syndrome (Trisomy 18)

Patau syndrome (Trisomy 13)

Fragile X syndrome

Huntington disease

Myotonic dystrophy

Friedreich ataxia

Turner syndrome

Klinefelter syndrome

Prader-Willi syndrome

Angelman syndrome

Beckwith-Wiedemann syndrome

Cri du chat syndrome

Williams syndrome

Alagille syndrome (NORD)

Achondroplasia

Polycystic kidney disease

Familial adenomatous polyposis

Familial hypercholesterolemia

Hereditary spherocytosis

Huntington disease

Li-Fraumeni syndrome

Marfan syndrome

Multiple endocrine neoplasia

Myotonic dystrophy

Neurofibromatosis

Treacher Collins syndrome

Tuberous sclerosis

von Hippel-Lindau disease

Albinism

Polycystic kidney disease

Cystic fibrosis

Friedreich ataxia

Gaucher disease (NORD)

Glycogen storage disease type I

Glycogen storage disease type II (NORD)

Glycogen storage disease type III

Glycogen storage disease type IV

Glycogen storage disease type V

Hemochromatosis

Mucopolysaccharide storage disease type 1 (Hurler syndrome) (NORD)

Krabbe disease

Leukodystrophy

Niemann-Pick disease types A and B (NORD)

Niemann-Pick disease type C

Primary ciliary dyskinesia

Phenylketonuria (NORD)

Sickle cell disease (NORD)

Tay-Sachs disease (NORD)

Alpha-thalassemia

Beta-thalassemia

Wilson disease

Fragile X syndrome

Alport syndrome

X-linked agammaglobulinemia

Fabry disease (NORD)

Glucose-6-phosphate dehydrogenase (G6PD) deficiency

Hemophilia

Mucopolysaccharide storage disease type 2 (Hunter syndrome) (NORD)

Lesch-Nyhan syndrome

Muscular dystrophy

Ornithine transcarbamylase deficiency

Wiskott-Aldrich syndrome

Mitochondrial myopathy

Autosomal trisomies: Pathology review

Muscular dystrophies and mitochondrial myopathies: Pathology review

Miscellaneous genetic disorders: Pathology review

Assessments

Friedreich ataxia

Flashcards

0 / 8 complete

USMLE® Step 1 questions

0 / 2 complete

High Yield Notes

10 pages

Flashcards

Friedreich ataxia

of complete

Questions

USMLE® Step 1 style questions USMLE

of complete

A 10-year-old girl is brought to her primary care physician with worsening gait instability. Over the past few weeks, the patient has had several falls at school. Her mother has noticed that the patient’s gait appears uncoordinated and that she has occasionally been slurring her words. The patient’s physical exam is notable for high-arched feet, difficulty walking in a straight line, and decreased vibratory sensation in both the upper and lower extremities. She subsequently undergoes a genetic analysis, which demonstrates a GAA repeat on chromosome 9. Which of the following is the most common cause of mortality in individuals with this disease process? 

External References

First Aid

2022

2021

2020

2019

2018

2017

2016

Autosomal recessive disease

Friedreich ataxia p. 549

Diabetes mellitus p. 352-360

Friedreich ataxia p. 549

Dysarthria p. 533

Friedreich ataxia as p. 549

Friedreich ataxia p. 549

chromosome association p. 62

hypertrophic cardiomyopathy p. 317

inheritance of p. 60

mechanism of p. 60

Gait disturbance

Friedreich ataxia p. 549

Nystagmus

Friedreich ataxia p. 549

Pes cavus

Friedreich ataxia p. 549

Proprioception

Friedreich ataxia p. 549

Transcript

Contributors

Evan Debevec-McKenney

Jessica Reynolds, MS

Friedreich’s ataxia is a disorder where there is impaired mitochondrial function that results in damage to various organ systems. In particular, the nervous system gets damaged which causes ataxia, where the muscles cannot be moved in a coordinated way. The disorder also affects other organs like the heart and pancreas. The disease gets its name from the German physician Nikolaus Friedreich who first described the disease over 150 years ago.

So, normally on chromosome 9, there’s a gene called the FXN gene that encodes a mitochondrial protein called frataxin. The normal amount of frataxin varies by tissue, with some tissues like the nervous system, pancreas, and heart, containing lots of it. Frataxin helps put together cofactors called iron-sulfur clusters. It is a combination of iron and sulfur that form part of enzymes with many functions such as electron transfer, a key part of mitochondrial ATP production.

Friedreich’s ataxia is caused by a mutation in the FXN gene where there is an abnormal repetition of a GAA sequence within that gene. This is called a triplet repeat, or trinucleotide repeat, which means that a group of three DNA nucleotides is repeated multiple times in a row, in this case guanine, adenine, and adenine. Normally, the GAA sequence is repeated 7 to 34 times within the FXN gene. But, in Friedreich’s ataxia there is repeat expansion where there are 100 to 1700 times as many copies, with most individuals having repeats ranging from 600 to 1200 times.

Now, Friedreich’s ataxia is inherited as an autosomal recessive condition. It’s passed on by parents who are “carriers” because they have one expanded FXN gene and one normal FXN gene, but don’t have any symptoms of Friedreich ataxia. They end up passing on their expanded FXN genes to their kid. Inheriting both copies of the FXN gene with an expanded GAA repeat is the most common way to get Friedreich’s ataxia.

The repeat expansion causes gene silencing which is when the FXN gene is not transcribed normally and very little frataxin protein is made. With low levels of frataxin, the mitochondria are unable to efficiently incorporate iron into iron-sulfur clusters and as a result, there is lower mitochondrial ATP production, so there’s less energy available for the cell. Furthermore, iron accumulates inside the mitochondria which reacts with oxygen to create unstable oxygen radicals. Over time these free radicals damage DNA and proteins in the cells in a process called oxidative damage. Then, this energy deficiency and oxidative damage result in dysfunction and death of cells that are highly dependent on mitochondrial function such as neurons, cardiomyocytes and pancreatic beta cells. The loss of neurons leads to ataxia. In the heart, there is abnormal thickening of the ventricles, a condition called hypertrophic cardiomyopathy, which is the most common cause of death in people with Friedreich’s ataxia.

Elsevier

Copyright © 2023 Elsevier, except certain content provided by third parties

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX