103,615views
00:00 / 00:00
Biochemistry
Glycolysis
Citric acid cycle
Electron transport chain and oxidative phosphorylation
Gluconeogenesis
Glycogen metabolism
Pentose phosphate pathway
Physiological changes during exercise
Amino acid metabolism
Nitrogen and urea cycle
Fatty acid synthesis
Fatty acid oxidation
Ketone body metabolism
Cholesterol metabolism
Essential fructosuria
Hereditary fructose intolerance
Galactosemia
Pyruvate dehydrogenase deficiency
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Lactose intolerance
Glycogen storage disease type I
Glycogen storage disease type II (NORD)
Glycogen storage disease type III
Glycogen storage disease type IV
Glycogen storage disease type V
Leukodystrophy
Metachromatic leukodystrophy (NORD)
Krabbe disease
Gaucher disease (NORD)
Niemann-Pick disease types A and B (NORD)
Niemann-Pick disease type C
Fabry disease (NORD)
Tay-Sachs disease (NORD)
Mucopolysaccharide storage disease type 1 (Hurler syndrome) (NORD)
Mucopolysaccharide storage disease type 2 (Hunter syndrome) (NORD)
Cystinosis
Hartnup disease
Alkaptonuria
Ornithine transcarbamylase deficiency
Phenylketonuria (NORD)
Cystinuria (NORD)
Homocystinuria
Maple syrup urine disease
Abetalipoproteinemia
Familial hypercholesterolemia
Hypertriglyceridemia
Hyperlipidemia
Disorders of carbohydrate metabolism: Pathology review
Disorders of fatty acid metabolism: Pathology review
Dyslipidemias: Pathology review
Glycogen storage disorders: Pathology review
Lysosomal storage disorders: Pathology review
Disorders of amino acid metabolism: Pathology review
Gaucher disease (NORD)
0 / 13 complete
0 / 2 complete
of complete
of complete
Laboratory value | Result |
Complete blood count | |
Hemoglobin | 8.4 g/dL |
Leukocyte count | 2,100 /mm3 |
Platelet count | 36,000/mm3 |
2022
2021
2020
2019
2018
2017
2016
osteonecrosis p. 473
osteonecrosis in p. 473
Gaucher disease p. 86
Gaucher disease p. 86
Gaucher disease p. 86
Jung Hee Lee, MScBMC
Evan Debevec-McKenney
Gaucher disease is an inherited condition characterized by insufficient levels of the enzyme glucocerebrosidase, also called beta-glucosidase.
It’s named for the French physician, Philippe Gaucher, who first described the condition.
Glucocerebroside is a glycolipid, which is a molecule containing both sugar and fat, that's included in the membrane of many different cells.
Glucocerebroside is formed through a set of reactions in the cell that require enzymes.
Once the glucocerebroside is made it becomes a part of various cells and when these cells become old or damaged, they are often engulfed, or eaten, by immune cells called macrophages.
Macrophages contain lysosomes, which are organelles that act as the cells’ digestive center. Inside lysosomes, large, potentially harmful substances are broken down, to be either discharged or reused by the body.
One example is glucocerebroside which is broken down by the enzyme glucocerebrosidase, or GBA, which is a product of the GBA gene.
In Gaucher disease, the GBA gene is faulty, meaning it has a mutation that leads to a reduction in the level or activity of glucocerebrosidase.
Hence, glucocerebroside can’t be broken down and it accumulates inside the lysosomes of macrophages.
So under a microscope, macrophages have a characteristic lipid-laden, or “fatty” appearance, similar to “crumpled tissue-paper.”
These transformed macrophages are called Gaucher cells, and they accumulate in multiple organs and tissues, including the bone marrow, liver, and spleen.
While the reason is unclear, Gaucher cells and other nearby macrophages secrete damaging lysosomal enzymes and inflammatory signals into the surrounding area.
This causes an immune response and production of scar tissue, resulting in many characteristic signs and symptoms.
GBA gene mutations are inherited in an autosomal recessive manner.
There are a few subtypes of Gaucher disease. In type 1, some individuals are asymptomatic, but when there are signs and symptoms they can be due to bone marrow fibrosis, which causes reduced production of red blood cells, resulting in anemia and associated fatigue.
Gaucher disease (GD) is a rare, inherited disorder that affects the body's ability to break down glucocerebroside molecules, because there is a lack of an enzyme called glucocerebrosidase that normally breaks down this molecule. This results in the accumulation of glucocerebrosidase in the lysosomes of macrophages, and other tissues, in different parts of the body.
There are three major types of Gaucher disease, depending on which tissues are most affected. In type 1 Gaucher disease, bone marrow cells are the most affected, which can lead to bone marrow fibrosis and anemia, and hepatosplenomegaly. In type 2 Gaucher disease, neurons in the brain are damaged and symptoms progress rapidly, resulting in death within the first few years. Finally, type 3 Gaucher disease is like type 2, but the symptoms develop at a slower rate.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.