Gluconeogenesis

36,057views

00:00 / 00:00

Videos

Notes

Gluconeogenesis

Biochemistry

Biochemistry and metabolism

Glycolysis

Citric acid cycle

Electron transport chain and oxidative phosphorylation

Gluconeogenesis

Glycogen metabolism

Pentose phosphate pathway

Physiological changes during exercise

Amino acid metabolism

Nitrogen and urea cycle

Fatty acid synthesis

Fatty acid oxidation

Ketone body metabolism

Cholesterol metabolism

Metabolic disorders

Essential fructosuria

Hereditary fructose intolerance

Galactosemia

Pyruvate dehydrogenase deficiency

Glucose-6-phosphate dehydrogenase (G6PD) deficiency

Lactose intolerance

Glycogen storage disease type I

Glycogen storage disease type II (NORD)

Glycogen storage disease type III

Glycogen storage disease type IV

Glycogen storage disease type V

Leukodystrophy

Metachromatic leukodystrophy (NORD)

Krabbe disease

Gaucher disease (NORD)

Niemann-Pick disease types A and B (NORD)

Niemann-Pick disease type C

Fabry disease (NORD)

Tay-Sachs disease (NORD)

Mucopolysaccharide storage disease type 1 (Hurler syndrome) (NORD)

Mucopolysaccharide storage disease type 2 (Hunter syndrome) (NORD)

Cystinosis

Hartnup disease

Alkaptonuria

Ornithine transcarbamylase deficiency

Phenylketonuria (NORD)

Cystinuria (NORD)

Homocystinuria

Maple syrup urine disease

Abetalipoproteinemia

Familial hypercholesterolemia

Hypertriglyceridemia

Hyperlipidemia

Disorders of carbohydrate metabolism: Pathology review

Disorders of fatty acid metabolism: Pathology review

Dyslipidemias: Pathology review

Glycogen storage disorders: Pathology review

Lysosomal storage disorders: Pathology review

Disorders of amino acid metabolism: Pathology review

Assessments

Gluconeogenesis

Flashcards

0 / 17 complete

USMLE® Step 1 questions

0 / 3 complete

High Yield Notes

12 pages

Flashcards

Gluconeogenesis

of complete

Questions

USMLE® Step 1 style questions USMLE

of complete

Biochemistry researchers are studying the pathway of gluconeogenesis with students in the laboratory. Which of the following is the rate-limiting step of gluconeogenesis?  

Memory Anchors and Partner Content

External References

First Aid

2022

2021

2020

2019

2018

2017

2016

Fatty acids

gluconeogenesis p. 76

Fructose-1,6-bisphosphatase p. 71

gluconeogenesis p. 76

Gluconeogenesis p. 76

cortisol and p. 337

diagram p. 72

ethanol metabolism and p. 70

in insulin deficiency p. 352

metabolic site p. 70

pyruvate metabolism and p. 75

rate-determining enzyme for p. 71

Glucose-6-phosphatase

gluconeogenesis p. 76

Hypoglycemia

gluconeogenesis and p. 76

Metabolism p. 70-92

gluconeogenesis p. 76

Succinyl-CoA

gluconeogenesis p. 76

External Links

Transcript

Content Reviewers

Rishi Desai, MD, MPH

Contributors

Marisa Pedron

Evan Debevec-McKenney

Justin Ling, MD, MS

Carbohydrates are made of sugar molecules, and the most important one is the 6-carbon sugar, glucose. It’s important to keep a steady amount of glucose in the blood, because cells use it to produce energy - in the form of adenosine triphosphate, or ATP. One of the ways you can do this is by eating carbohydrate-rich foods like pasta. But in between meals, when fasting, the body maintains glucose levels using gluconeogenesis.

Gluconeogenesis is a metabolic pathway that uses enzymatic reactions to make glucose from other molecules, like amino acids, lactate, and glycerol. Gluconeogenesis primarily takes place in liver cells, but it can also happen in the epithelial cells of the kidney and the intestines. Specifically, it takes place in the cytoplasm, mitochondria, and endoplasmic reticulum of cells found in these tissues.

Okay, so let’s say you’re going hiking in the woods, and you fuel up on some pasta before you leave. Now, during the hike, you get lost and end up stranded with no food. Initially, the glucose in your pasta is broken down by a series of enzymatic reactions to make pyruvate, producing ATP in the process. This is called glycolysis, and it keeps you going for a couple of hours. Some of the extra glucose is stored in the liver cells in the form of glycogen, which is a bunch of glucose molecules stringed together. When you’re fasting, you still need glucose, in particular for your red blood cells and your brain. And you might need it to find your way out of the woods. So, it’s up to your liver to maintain adequate blood glucose levels while fasting. There are two pathways that can contribute glucose: glycogenolysis and gluconeogenesis. So with glycogenolysis, the liver breaks down glycogen into individual glucose molecules, but that only helps for 12 to 24 hours of fasting, because glycogen stores are finite. In contrast, gluconeogenesis makes glucose from scratch, so it can keep on going in the event that you fast for more than a day. Actually, by 12 hours of fasting, gluconeogenesis is the main provider of glucose in the bloodstream.

Elsevier

Copyright © 2023 Elsevier, except certain content provided by third parties

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX