00:00 / 00:00
Genetics
Achondroplasia
Alagille syndrome (NORD)
Familial adenomatous polyposis
Familial hypercholesterolemia
Hereditary spherocytosis
Huntington disease
Li-Fraumeni syndrome
Marfan syndrome
Multiple endocrine neoplasia
Myotonic dystrophy
Neurofibromatosis
Polycystic kidney disease
Treacher Collins syndrome
Tuberous sclerosis
von Hippel-Lindau disease
Albinism
Alpha-thalassemia
Beta-thalassemia
Cystic fibrosis
Friedreich ataxia
Gaucher disease (NORD)
Glycogen storage disease type I
Glycogen storage disease type II (NORD)
Glycogen storage disease type III
Glycogen storage disease type IV
Glycogen storage disease type V
Hemochromatosis
Krabbe disease
Leukodystrophy
Mucopolysaccharide storage disease type 1 (Hurler syndrome) (NORD)
Niemann-Pick disease type C
Niemann-Pick disease types A and B (NORD)
Phenylketonuria (NORD)
Polycystic kidney disease
Primary ciliary dyskinesia
Sickle cell disease (NORD)
Tay-Sachs disease (NORD)
Wilson disease
Cri du chat syndrome
Williams syndrome
Angelman syndrome
Prader-Willi syndrome
Beckwith-Wiedemann syndrome
Mitochondrial myopathy
Klinefelter syndrome
Turner syndrome
Fragile X syndrome
Friedreich ataxia
Huntington disease
Myotonic dystrophy
Down syndrome (Trisomy 21)
Edwards syndrome (Trisomy 18)
Patau syndrome (Trisomy 13)
Alport syndrome
Fragile X syndrome
Fabry disease (NORD)
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Hemophilia
Lesch-Nyhan syndrome
Mucopolysaccharide storage disease type 2 (Hunter syndrome) (NORD)
Muscular dystrophy
Ornithine transcarbamylase deficiency
Wiskott-Aldrich syndrome
X-linked agammaglobulinemia
Autosomal trisomies: Pathology review
Miscellaneous genetic disorders: Pathology review
Muscular dystrophies and mitochondrial myopathies: Pathology review
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
0 / 12 complete
0 / 4 complete
of complete
of complete
Laboratory value | Result |
Hematologic | |
Platelet count | 56,000/mm3 |
Hemoglobin | 9.8 g/dL |
Reticulocyte count | 4.2% |
Haptoglobin | 10 mg/dL |
Prothrombin time | 11 seconds |
Partial thromboplastin time | 29 seconds |
Bleeding time | 8 minutes |
Blood, plasma, serum | |
Lactate dehydrogenase (LDH) | 380 U/L |
Total bilirubin | 5.1 mg/dL |
Direct bilirubin | 0.3 mg/dL |
Alanine aminotransferase (ALT) | 980 U/L |
Aspartate aminotransferase (AST) | 530 U/L |
2022
2021
2020
2019
2018
2017
2016
G6PD deficiency p. 77
G6PD deficiency p. 417
hemolysis in G6PD deficiency p. 251
G6PD deficiency and p. 417
hemolysis in G6PD deficiency p. 251
G6PD deficiency p. 77
in anemia taxonomy p. 425
degmacytes in p. 422
Heinz bodies in p. 424
in G6PD deficiency p. 417
G6PD deficiency p. 417
G6PD deficiency p. 77
hemolysis in G6PD deficiency p. 251
hemolysis in G6PD deficiency p. 251
hemolysis in G6PD deficiency p. 251
hemolysis in G6PD deficiency p. 251
G6PD deficiency from p. 417
hemolysis in G6PD deficiency p. 251
Glucose-6-phosphate dehydrogenase deficiency, or G6PD deficiency, is a genetic disorder characterized by decreased levels of glucose-6-phosphate dehydrogenase, which leads to the destruction of red blood cells.
Normally, as a part of the metabolic process, our body produces free radicals like hydrogen peroxide, or H2O2.
Free radicals can damage the cells in many ways including destroying the DNA, proteins, and the cell membrane.
Now, we have a molecule in our body called glutathione which acts as an antioxidant and goes around and neutralizes these free radicals.
In order to function, these molecules need to be in the reduced state where they can donate an electron to the H2O2 and convert them into harmless water and oxygen.
However this causes the glutathione to become oxidized, so before it can get back to work, an enzyme called glutathione reductase will use an NADPH as an electron donor and and reduce the oxidized glutathione back into its working state.
After giving up its electron, the NADPH will become NADP+.
So to replenish the supply of NADPH, we have the glucose-6-phosphate dehydrogenase enzyme, or G6PD, which reduces NADP+ back to NADPH by oxidizing a glucose-6-phosphate.
Glucose-6-phosphate is a metabolite of glucose so we usually have a ready supply of this molecule as long as we are not starving.
Now G6PD deficiency is caused by mutations on the G6PD gene which is found on the X chromosome and thus it’s an X-linked recessive genetic condition and it almost exclusively manifests as a disease in men, since they have one X and one Y chromosome, so if the one and only chromosome has the mutation, then they have the disorder.
Women on the other hand have two X chromosomes, so those with an X chromosome that has the mutation, still have another X chromosome with a normal copy of the gene and thus females are usually carriers and only transmit the disease to their sons.
The G6PD mutations cause defective G6PD enzymes to be produced and these have a shorter half-life, meaning they don’t last as long as the normal enzymes.
There are two common types of G6PD deficiency: a Mediterranean and an African variant.
The Mediterranean variant is characterized by a more markedly reduced half-life of G6PD.
Now, sometimes this can actually be an advantage since it provides protection against falciparum malaria.
G6PD deficiency makes the parasite-infected erythrocyte more susceptible to dying from oxidants, which will also kill the malaria parasites.
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.