00:00 / 00:00
Biochemistry
Amino acid metabolism
Nitrogen and urea cycle
Citric acid cycle
Electron transport chain and oxidative phosphorylation
Gluconeogenesis
Glycogen metabolism
Glycolysis
Pentose phosphate pathway
Physiological changes during exercise
Cholesterol metabolism
Fatty acid oxidation
Fatty acid synthesis
Ketone body metabolism
Alkaptonuria
Cystinuria (NORD)
Hartnup disease
Homocystinuria
Maple syrup urine disease
Ornithine transcarbamylase deficiency
Phenylketonuria (NORD)
Essential fructosuria
Galactosemia
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Hereditary fructose intolerance
Lactose intolerance
Pyruvate dehydrogenase deficiency
Abetalipoproteinemia
Familial hypercholesterolemia
Hyperlipidemia
Hypertriglyceridemia
Glycogen storage disease type I
Glycogen storage disease type II (NORD)
Glycogen storage disease type III
Glycogen storage disease type IV
Glycogen storage disease type V
Mucopolysaccharide storage disease type 1 (Hurler syndrome) (NORD)
Mucopolysaccharide storage disease type 2 (Hunter syndrome) (NORD)
Fabry disease (NORD)
Gaucher disease (NORD)
Krabbe disease
Leukodystrophy
Metachromatic leukodystrophy (NORD)
Niemann-Pick disease type C
Niemann-Pick disease types A and B (NORD)
Tay-Sachs disease (NORD)
Cystinosis
Disorders of amino acid metabolism: Pathology review
Disorders of carbohydrate metabolism: Pathology review
Disorders of fatty acid metabolism: Pathology review
Dyslipidemias: Pathology review
Glycogen storage disorders: Pathology review
Lysosomal storage disorders: Pathology review
Glycogen storage disease type I
0 / 9 complete
0 / 3 complete
of complete
of complete
2022
2021
2020
2019
2018
2017
2016
Von Gierke disease p. 85
Von Gierke disease p. 85
Von Gierke disease p. 85
Von Gierke disease p. 85
Von Gierke disease p. 85
Von Gierke disease p. 85
Glycogen storage disease type I, also called Von-Gierke’s disease, is a genetic disorder caused by a mutation in the glucose 6 phosphatase gene on chromosome 17.
The end result is that glycogen can’t be broken down into glucose in liver cells, so glucose metabolism goes awry, resulting in symptoms like low blood sugar, weakness and poor growth.
Glucose is such an important energy source, that our body stores excess glucose in liver cells and skeletal muscle cells in the form of glycogen.
Glycogen is basically an enormous molecule or polymer, that’s made up of glucose molecules linked together by glycosidic bonds.
And glycogen has a main chain, as well as multiple branches sprouting off of it.
These branches allow glycogen to be compact and also allow it to rapidly add and remove glucose to and from the big glycogen molecule.
Talk about a molecular sugar rush!
Now, glucose molecules are usually added to glycogen in response to insulin, which is secreted by the pancreas after meals.
That’s when there’s high blood sugar, or plenty of glucose floating around in the bloodstream.
So, it makes sense for some of this glucose to be stored as glycogen, right?
Now when it’s been a while after a meal, so when you’re fasting, blood sugar levels take a dip. In response, the pancreas secretes glucagon and the adrenal glands secrete epinephrine.
It turns out that glucagon tells the liver cells to break glycogen down into individual glucose molecules, and epinephrine tells skeletal muscle cells to do the same.
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.